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1) How do nuclei g‘ét\ niadé‘r

When? Where? Is it an ongoing process?

- 2) How does making nuclei affect the stellar
and galactic environment?

| Quiescent or Explosive? Exothermic or Endothermic?




PROCESSES & SITES

Stable nuclel

Known nuclei
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Protons

126

- .
S e -
Alpha-decay

Fission
Subsequent’™._
beta-decay

"

Terra Incognita

\[3' V)
> (N.,Y)
\ (p~v; EC)

Understanding Origins means understanding that
transmute nuclei and the sites where these processes occur.




NUCLEAR INPUT

1) Reaction Rates

For most astrophysical processes, a wide variety of
reaction rates are needed.

2) Masses and Partition Function

In equilibrium, rates are unimportant because of detailed
balance.

Equilibrium populations depend on relative masses and
partition functions, the sum of thermally populated levels.

3) Nuclear Matter

For Neutron Stars and their natal supernovae, significant
fractions of a solar mass are at densities similar to nucleons
in a nucleus. Consider a nucleus with A~10°7 held together
by gravity.



WHAT ARE REACTION RATES?

- Particles of
-~.. Type #2
- o yp
Particles of - ‘. > - “:,
Type#l @ ¢ p et " effective
> & area
® 0 @ (@)
o 7 (o (o

Reactions / cm?®/ s =
relative flux particles #1 (cm™2 s71)
X number of target particles #2 (cm™)

X effective area of particle #2 in reaction (cm?)



RATES INTO DIFFERENTIAL EQN.

Define
n; = number of particles of type 1 per volume (cm™)

n, = number of particles of type 2 per volume (cm™)

v = relative velocity (cm s™1)

o(v) = effective cross sectional area for a reaction (cm?)
Then

n; X v = relative flux of 1 relative to 2 (particles cm™2 s™!)
Reactions / cm’ / s =

relative flux particles 1 (cm™2 s 1)
X number of particles 2 (cm™ )
X effective area of each particle 2 for a reaction (cm?)

Reactions / cm?® / s = (n; X v) X ny X 6(v) = ny ny 6(v) v

As a differential Equation, dn,

W — —nlnzo'(U)U



ABUNDANCE & MASS FRACTION

Number density, n;, naturally depends on the
mass density, p (g cm™).

It 1s possible to separate this dependence by defining the
abundance, Y; = n; / p N4, where N4 1s Avagadro’s Number.

Abundance has units of mole g=! and is the fraction of a
mole of species 1 per gram of matter, so 1t also called Molar
Fraction.

Multiplying the abundance by the molecular weight of

species 1, A1, which has units of ¢ mole-1 gives the mass
fraction, Xi N Ai Yi_

Mass fraction 1s convenient for presentation as 2; X; =1.

This 1s 1n fact an expression of nucleon number conservation.



LOCALIZING NUCLEAR EFFECTS

Nuclear reactions are not the only process capable of altering

the mass density and number densities.
on; onqu
o 22 0x
Practically, it will be the responsibility of the hydrodynamic

solver to follow the advection of nuclear species 1n space.

= nyny(ov)

Splitting the hydrodynamic changes in density from the local
nuclear effects, using n; = p N, Y;, allows 1solation of local

changes.
dn; dY, 5 o
=0 = pN 4 Y ==L NAYinU(Uij)Uij
p

This leaves an ordinary differential equation for just the
thermonuclear reactions. Y.
l

dt




MAXWELL-BOLTZMANN

¢(E) « E exp(-E/KT)

__ ®max
L“;" |
e @(E) « exp(-E/KT)
B | .\
& .
= _@(E) xE 4
KT - ENERGY E

Nuclei 1n the stellar plasma are far from monoenergetic.

For a given temperature, there 1s a distribution of relative
velocities between any pair of particles in the star.

For most circumstances, a Maxwell-Boltzmann Distribution 1s
sufficient.



NUCLEAR REACTION RATES

Integrating over the MB velocity distribution gives the
thermal average cross section, denoted {ov).

dy,
dt

Define Ni{ov) (cm’ s™!' mole™!) as the “Reaction Rate”.

= —pN,Y;Y;(ov)

Important Distinction:

Cross Section: function of relative velocity (or energy)
Reaction Rate: function of temperature (not energy)

Thermal average of cross sections needed for rates!
But rate at any temperature depends on o(E) over range of
energies.



M-B DETAILS

The Maxwell-Boltzmann distribution, for velocity, v, as a
function of temperature, 7, and mass, m;, 1S

¢.(v, T)=4 % il % ex —mivz
(0, = LT
’ 27k T P\ 2kT

With / ¢d.(v, T)dv =1
0
Reaction Rate is
N ,(ov)(T) = / / N (0, T)py(vy, T)o (v — 0y) (V] — Uy)dVdVs
0w 90

Change to center of mass coordinates: relative velocity, v =
(v1-vy), reduced mass, u, Center of Mass velocity, V, and total

mass, M e oy 12 —uv?
Sl TR T eXp( KT )

3/2 V2
v, T) =422 (2= ) -
AN el e eXp( 2KT




REACTION RATE IN DETAIL

Using center of mass coordinates

N 4(ov)(T) = /OO /OO N, T)p(V,T)o(v)vdv dV
0) 0
Since /OO oV, T)dV =1
0

integration over V yields

N antes TR N by U 10"\ 4
AEolL Lz 4 ”<2nkT> /0 s b Lol

Change to center of mass energy E = V2 uv?

N (60)T) = N, (8/z )" (kT) > / = BVE Sxi (£> dE
: kT



CROSS SECTION & S-FACTOR

Helptul to simplify the rate expression for charged particle
induced reactions by exploiting two well known energy
dependences tor o(F)

Charged particle Cross Sections o(FE)

1) are proportional to probability

for coulomb barrier penetration
exp[—(Es/E)”], where the

Gamow Energy, (ﬂez Z.Z, >2
1

v

2) are proportional to the i
2

nuclear size, w4}, Bl iy

The other energy dependencies are lumped together into
S(E) - the Astrophysical S-factor



NON-RESONANT REACTIONS

T T For many reactions,
MOST of the energy
dependence 1n 6(E) 18
described by the
penetrability & nuclear
size terms.

S

*He (a,v) 'Be

s,

CROSS SECTION o (nb)

For non-resonant
Folfs & Rodney, pg. 157 reactions, S (.E) 1S very
e slowly varying.

ac

Advantageous to work
with S(E) rather than
o(E).

-
1

FACTOR (keV-b)
s g
A 1 |

S(E)-
o
b=t

ENERGY E_, (keV)



EXTRAPOLATING THE S FACTOR

For many reactions o BT
of astrophysical 0 I
interest, the energies 0o [ |
at which o [ S
measurements are 5 1| 220 1
feasible are much S vl ]
larger than the § w0 | 1
energies at which 3 10" e—sx10ty |
the O gl ]
=[] 15x10°K )
10_25: g O ]
Extrapolating the S |l Ty =0.015 4N(p,y)150 -
factor 1s much more o [l T
1‘611 abl e. 0 100 200 300 400 500

E (keV) Champagne
cm



REACTION RATE & S FACTOR

By writing the cross section as

1 Eg\? S(E
o(B)= (5 ) xexp |- (2] | x5(B)
the Reaction Rate 3 :
N {(cv)(T) = N, (8/zp)* (kT)™' / c(E)E exp (;—];
0
becomes
N 4{ov)(T)

= N, 8/zp)V? (kT)™"? / S(E) exp |-—-
0

S-factor has units of Energy X Area ... typically keV-barn,

MeV-barn where 1 barn = 10~2* cm?.

E
kT

(

Eg
E

)

BN —

)dE

dE



GAMOW PEAK

It S(E) 1s slowly varying,
the integral 1s dominated
by exp [-E/kT — (EG/E)™].

COULOMB PENETRABILITY \

o o exp(-E/E)"

—>

MAXWELL-BOLTZMAN
DISTRIBUTION

+ o exp(-E/KT)

GAMOW PEAK

This decreases at high
energy because of the left
hand term.

PROBABILITY

This decreases at low
energy because of the

right hand term. T ENERGY ——
Maximum at E, the most L KT 3
effective stellar energy g "y (T)

1
“Width” of AE,, the te A ( Ey ) :
Gamow Window : \/5 kT



RESONANT REACTION RATES

The presence of a Rolfs & Rodney, pg. 170

Y
nuclear resonance
with an energy e @ & % & @
near th€ Gamow TARGET A EXCITED STATE E, FINAL STATE

OF COMPOUND NUCLEUS OF COMPOUND

Window can B (RESNANCE}  MUCLEUS B
dramatically e
i Ej Ji
INCrcase the PROJECTILE : 1
- 2 i s s
reaction rate by ]
( TARGET A Oy

factors of 10 to 0~ VALUE Y v
10’7 in some cases. ot )

€y L

o

COMPOUND
NUCLEUS

The search for these resonances and measurement of their
properties 1s extremely important.



GAMOW WINDOW EXAMPLES

Newton, lliadis, Champagne, ... (2007)

50l T=06GK |,,l T=2.5GK !
== Gamow peak
= w== Effective energy |
o 15F {15F [ | :
2
>
O 1.0t 1 1.0} :
0
= "
: SR NI
05} |H HIH H il 4 osp W1 I !
OO | 1 1 00 1 1 1 1 | | |
20 22 24 26 28 30 32 34 36 20 22 24 26 28 30 32 34 36
Atomic Mass Atomic Mass

Gamow Peak applies to direct capture, but only “back of the
envelope’ estimate for resonances.



Rate

REACTION RATE EXAMPLES

13N(p,y)140

/‘resonant

/ non-resonant

—

nucastrodata.org

lemperature (K)

10

Non-resonant rates vary
smoothly as function of
temperature.

Rate changes by many
orders of magnitude as

temperature changes by
100.

Resonances add features,

in this case an increase by
a factor of 10 near 1 GK.

Plot from Computational
Infrastructure for Nuclear
Astrophysics.



NARROW RESONANCES

MAXWELL~ BOLTZMANN
DISTRIBUTION

/ NARROW RESONANCE

8

WIDTH M=< ER

RELATIVE PROBABILITY

Er ENERGY E

For single resonances with a narrow total width, the
resonance energy region effectively becomes the Gamow

Peak



BREIT-WIGNER FORMULA

For a Narrow (Lorentzian) resonance the cross sections 6(E)

n(hic)? 2J,+ 1) 2=

In" out

2uE 2J, +1DQJ,+ 1) [(E - E)? +(T,,,/2)?]

J, = spin of resonant state
J1, Jo = spin of reactant nuclei
E, = energy of resonant state

[';, = energy width of reaction channel to form state
(entrance channel) = 7/ 1,

I',.; = energy width of exit channel = A/,

I, = total energy width of resonance = 7/ 7,



RESONANT REACTION RATES

For narrow resonances
N (o U>(T)
1/2 312 i
0

o0

12 30 e
0

Integrating the cross section \

MAXWELL~ BOLTZMANN
DISTRIBUTION

NARROW RESONANCE

/height ‘
[ oam BXE =21 (£,
0

\Width

WIDTH M=< ER

REBLATIVE PROBABINITY

—
Er ENERGY E

ﬂ(hc)z (2Jr el 4Flnrout
opw (E,) = >
2uE, 2h + DRL+D 2.

where




RESONANCE STRENGTH

Define
. 2J. + 1)
T oL rbhenL D
r T

in*: out

lﬂtot
wy 1s the resonance strength (units are 1in energy).

= Statistical factor

In terms of wy
n(hc)> wy Linear in strength Exponential in

opy (E,) = WE T I /resonance energy
5
2 _Er
N ,(ov)(T) = N4 (,ukT) h* wy exp ( o )

For multiple narrow resonances

4 3/2 E
NA(GU)(T)—NA( ) % Za) exp( )




The presence of resonances
can make a dramatic

difterence (orders of "
. . . QO
magnitude) 1n reaction rates. -
. i

Resonances with zero orbital €

angular momentum transfer &
are important (strengths are A
S

often large). v
p

Especially important are
resonances with a large
strength and a low resonance
energy.

WHICH RESONANCES?

5
10 T T T T IrrrIr T 1T T 179371717 3

2 Al(p,y)*°Si

FiTrrrrrrrrnea

lliadis et al.
-®* LPRC 53

|

7
Non-resonant
Direct capture

-— .
p— - —

07 | \

: £ =44 keV
0> E
10~° E

_‘ E,=4352 keV
w-” Aaal A J

0.01 0.1 1
Stellar temperature T (GK)

2 3/2 - E
NA<GU>(T)—NA<M ) h Za) exp( kT)



REACTION VARIETY

While we have heretofore concentrated on reactions with two
reactants, astrophysical circumstances include reaction with
only a single nuclear reactant; for example, decays and
interactions with photons and neutrinos.

Such reaction rates enter the ditferential equation in a form

lik dY.
ike dt, :

where 4;, the decay constant, 1s related to the half-life, 7y,
byA;=In2/7,

There are also instances where reactions, or effective
reactions, including three and four reactants enter into the
nuclear reaction network, taking the form,
dy,
dt

= PZN%UU)]',k,leYlev



INVERSE REACTIONS

Many of these one nucleon reactions, especially the photo-
disintegration reactions, are the inverse of other reactions in the
network. Forward and inverse reactions are linked by time reversal
invariance, thus their reaction rates are also linked.

For the reaction pair i + j <> [ + m, this relation depends on the
energy difference between products and reactants, Q;,,, and the
partition functions, G = X; (2J,+1) exp (-E/kT), the energy weighted

density of states.
Gle AlAm 3/2
= [k pT).

<UU>i,j =

For the reaction pair j + y < [ + m, the characteristics of the thermal
photon distribution enter into the relation,

GG, (AA, 512 m,kgT )i
A, (T) = (oU); m €Xp(=0,,/kgT).

Gj Aj 2h?




TIMESCALES

Each reaction has a characteristic timescale which depends on

the thermodynamic conditions and the current composition.

For example, for the

single reactant case,
1

4

Reactions with multiple
reactants have timescales

Tj(j) =

relative to each reactant. For

example, 1in the two reactant
case, i 1

PNA<0'U>j,kYk
These timescales can vary
by orders of magnitude.

Rate

10 F

10° F
10* F
10° F

10° F

10°
10* E
10° F
8

10

— 12C-->n +11C
— 12C-->p +11B

—n+ 12C--> 13C
—p + 12C--> 13N
—— 4He + 12C --> 160

—n + 12C --> 4He + 9Be
— 4He + 12C-->n + 150
— 4He + 12C--> p + 15N

— 12C+ 12C-->p + 23Na :

10 10°

Temperature (GK)

10



NETWORK EQUATIONS

Bring all of the reaction rate terms together, we have a system
of ordinary differential equations for the temporal evolution of
the nuclear composition. For each species, i, this takes the

form. , . .
J J-k
+ Z ﬂ/;,k’[pzNi<GU>j,k,leYle
j.k,l

To specity the number of particles of species i that are created
or destroyed 1n a reaction we introduce N,

To account for reactions involving the same indistinguishable

species, we itroduce
i i N; i N;

ik nj i s nj k.l




EULER’S METHODS

The most straightforward discretization of this system of

equations 1S o -
Y+ At)—-Y (1)

At

= (1 = OY(t + Af) + OY (1)

For ® =1, this 1s the explicit, forward Euler method.
For ® = 0, this 1s the implicit, backward Euler method.

Both Euler methods are first order accurate in time, the
accuracy 1mproves mversely proportional to the timestep.

For ® = 142, this 1s the semi-implicit trapezoidal method,
which 1s second order accurate 1n time.

Both backward Euler and trapezoidal method are used in
astrophysics. Forward Euler performs very poorly because of
the range in timescales.



STIFF EQUATIONS

The wide range of timescales causes the reaction network
system of equations to be sziff. Physically, this 1s a usable
definition of stiffness.

Note that even a single equation can be stift 1f 1s has two very
different timescales, for example, Y(r) = e 9% + ¢ + 1.

The preferred behavior of the time step y Singe Sif Equaon
At 1s clear | |

1) For t < 0.01 seconds, Ar ~ 1/10,000s |
2) 102 <t < 10, At~ 1/100 s s !
3) fort > 10, At ~ t. o

However, forward Euler and many N
methods use Ar ~ 1/10,000 s throughout. * ©« © ® 1«

time




EXPLICIT INSTABILITY

The challenge of stability is /0
)i T

that even inconsequential —

abundances can destroy the ul \ o tg;gsésms
solution. Small fas
+ component
Even 1n cases where the 2 (tr1, Yiretevac
; I >
exact solution may Ay :
asymptote to zero, the
explicit update can produce ty
3 5 | T Instability
negative abundances it o 2006
At > Z for any SPeCleS. 22 Forward Euler - - 22 21 202
Y 1 s 10
In contrast, implicit | A NIRRT =
A1 1 AT Y
methods kﬁep these small 2} h=0008 2} h=0015 2} h=0020= 2k _205h=o.03

-0.0 0.02 0.04 0.6 -0.0 005 0.1 00 005 01 015 00005 01 015 0.2

abundances well behaved. Tine



MEASURING STIFFNESS

From a mathematical perspective, a system of equations 1s
stiff 1f the timestep must be chosen on the basis of the stability
of the system, rather than the accuracy of the solution.

A more definition of stiffness can be stated for a system in the

form > T
ol
° aY ° ° °
which has eigenvalues 4;. The system 1s stiff 1f real part of all
/Ij < 0 and - maxlm(,lj)l :
= >
min|R(4;)|

For many fields, & ~ 10* -10°, but for astrophysical nuclear
reaction networks, & ~ 10!°is possible.

For example, in the Sun, p + p - d + ¢ + v, has a timescale
of billions of years, p + d — °He has a timescale of seconds!



BACKWARD EULER

While the explicit forward Euler method requires knowledge
of the derivatives only at time ¢z, the beginning of the timestep,
the backward Euler method requires this information at the
future time, ¢ + At¢, making it an implicit method.

The solution of the Backward Euler method 1s equivalent to
finding the zeros of the equation

Y+ Af) — Y ()
At

This 1s done via the Newton-Raphson method, producing a
trial abundance change of

= = = =
T a%"(r + A?) = dli(t + A?) =
oY (1 + Ar) At 9Y (¢t + At

Z (- AP = Yt +AD)=0.

Additional iterations can be performed to refine the solution.



SOLVER COSTS

Compared to forward Euler, backward Euler adds the
computational cost of building and solving the Jacobian
matrix for each of possibly several iterations for each
timestep. This 1s a considerable cost, a factor of 10 or more.

Yet backward Euler 1s the more time efficient solver because
the larger timesteps that can be taken more than ameliorate
this added cost.

For any method of solving ordinary differential equations,
including those we consider here,

total numerical cost = (cost per timestep) X (# of timesteps)

Methods with much larger costs per timestep can be more
efficient 1t they allow larger timesteps.



BADER-DEUFLHARD

Higher order methods attempt to take even larger timesteps
than backward Euler and/or reduce the frequency of matrix
solves. They also can provide rigorous error estimates by
comparing solutions of differing orders.

One example 1s the variable order Bader-Deuflhard method.

This method divided the timestep into m e oY
substeps with 8¢ = A#/m and the matrix = PY%

In the first substep, solving o - AY, = 5&0 Y, = Y, + 6%,
Fork=1tom—1, o - x = 6tY, — AV,_, = 67, = 6¥,_; + 2x

= ¥ = ?k + 67,
Fork=m, « - AY = 5t(Y — AY 1):>Y(t NG — e 5Y

BD 1s twice as expensive as BE, but may allow larger At.



SPARSE MATRICES

methods 1s to take advantage of the
“emptiness’” in the Jacobian matrix.

100

In principal, every species reacts
with each of the hundreds of others,
resulting in a dense matrix.

200

The Coulomb term in the nuclear
potential (x Z,Z; ) causes captures of

free neutrons and 1sotopes of H & wh

0 100 200 300

One way to speed up all implicit ' e

Heavy lon
I Reactions

He to occur much faster than fusions of heavier nuclel

Likewise, photodisintegrations tend to eject nucleons or o -particles.

Thus we generally need only consider twelve reactions linking it to its

nuclear neighbors by the capture of an n,

different one of these four.

p, o or v and release a



ASYMPTOTIC METHOD

Implicit methods succeed because they allow larger timesteps
to be taken without the less abundance species misbehaving.

Finding an explicit method with this same behavior would
save the cost of building and solving the Jacobian matrices.
Some such methods have been used 1n other fields. One
example 1s the asymptotic method.

We can write our network ODE 1n terms of reaction fluxes,
Y, =F{, )= ) F
where Fj; 1s the flux between abundance i and abundance ;.

If we divide F;into fluxes which add to the abundance of i and
those that remove abundance from i

,=F®-F@©



ASYMPTOTIC METHOD 2
The flux out of i 1s proportional to ¥;

F(t) = (K} (1) + k5 (1) + ... + ki, (1)Y;(2) = k' (1)Y,(?)
where the k', are rate parameters, A, or {cv)Y,,.

Rearranging this equation and substituting into the previous
equations yields ey
Y1) = — ’

k()
In the asymptotic limit for species i, F(¢#) = F3(t) and Y= 0,
SO a first approximation 1s

B
s

k'(t,)

We can improve this by approximating
v - Y) =YD _ 1 ) By
PER T N




ASYMPTOTIC METHOD 3

Using this expression for Y yields

(1,) 1 Ft .y 7
ki(t,)  ki(t,))At ( ki(t,) Kk (t,_1) )
This approximation 1s most reliable when the approximated
derivative 1s small, for example when kAt 1s large.

The condition kAr > 1 1s ym]

Y(t,) =

precisely the point at o o components
which forward Euler, and

many other explicit
methods, become unstable.

+

|
|

Y -yn

Thus combining the Asymptotic method for k;Az > 1 with
forward Euler allows an explicit update of all species,
including those that would destabilize forward Euler alone.



NOVA SUCCESS

Feger et al showed an asymptotic
method to be competitive with -
BE for a nova test problem. :
The network used has 189 ‘Z .
species. Building and solving 2,
the matrix represented 87% of S i
the network cost. " gtmeeondy
All told, the asymptotic method [ .

2m\.- arly

_ : Expansion

needed ~ twice as many
timesteps, but each timestep

should be cheaper by ~ 1/(1-.87)
or roughly a factor of 7.

————— >

log timestep (seconds)

Backward-Euler

Y I Asymptotic

Thls IS prellmlnary bUt promlslng. 10.553I67756 | 10.55?;67757 | 10.55567758 | 10.553IG7759
log time (seconds)



TROUBLE WITH EQUILIBRIUM

The results are much less promising

for this example of burning in a
thermonuclear supernova.

For the first 1.5 seconds, the
asymptotic method 1s competitive.

However, once the temperature
exceeds 2 GK, the asymptotic
timestep drops precipitously.

For temperatures in excess of 2
GK, many pairs of forward and

inverse reaction reach equilibrium,

which challenges the assumptions
used to derive the method.

log timestep (seconds)

—2

150 Species |

Backward-Euler
------ Asymptotic

I
0.10

I I I I
0.15 0.20 0.25 0.30
log time (seconds)

Fraction Equilibrated
------ Fraction Asymptotic

log time (seconds)



THERMONUCLEAR EQUILIBRIA

At conditions of high temperature and density, thermonuclear
reaction rates may be sufficiently rapid to achieve Nuclear
Statistical Equilibrium (NSE) within the timescale set by the
hydrodynamics of the astrophysical setting.

In mOSt Such Cases’ the O*N [ ‘ T T ‘ T T ‘ T T [ ‘4
¢ % 5GK, 10° g cm™ .

strong and electromagnetic N %

reactions equilibrate but sk .

not the weak nuclear 55

reactions.

Log(X(*2))

Thus the NSE composition

depends on the neutron- I SC WAL\
richness, often represented | - / i
by the electron fraction, ARVAVARY S8 S ST S U8

Y,=XZY, I



NUCLEAR STATISTICAL EQ.

The NSE abundance relation can be derived by extending
detailed balance through proton and neutron captures,
building nucleons into heavy nuclei. However, it 1s most
easily computed via chemical potentials, Z u, + N u, = u(*Z).

For a Maxwell-Boltzmann gas, the chemical potential 1s

=
Y; 2rh? 2
lui zmiC2+kBT1n pNAEl <mlkBT)
where G(“Z) and B(“Z) are the partition function b kT 32
and binding energy of the nucleus AZ and 6 = ( 2” ;iz )
T

Solving for Y; yields

€ 7 NN BAZ
YA2Z) = ( )<p—"‘> A%exp< k( T)>YnNYpZEC(AZ)YnNYpZ

2A 0 -

2 unknowns, Y, & Y, requires 2 constraints, ¥, and 2 A;Y;=1.



EQUILIBRIA IN NETWORKS

Local equilibrium expressions are common 1n nuclear reaction
networks, hidden 1n three-particle processes.

The most common example of this 1s the triple a process,

‘He + “He <= °Be (Q = —0.09 MeV)
‘He +°Be = *C" - “C+vy(Q = 7.37 MeV)

With z(®Be) ~ 107!¢ s, very rarely does a ®Be survive long enough for

a third a to capture. -
) e

N M©®Be) - 2M
Y(SBC) ol p_A (l ( ) & ) Y(xz

D) kT

For T > 0.1 GK, the formation of the excited state of '“C is usually
followed by a decay back to °Be

- oN N\ 2/ 3\ MI*C* - 3M,
e
B

and the reaction rate is r3, = ,DNAY(IZC*)FJ,(IZC*)/% :




SUMMARY

The network of thermonuclear reactions linking a group of
nuclear species creates a system of ordinary differential
equations that can be solved for the temporal evolution of
these species.

The presence of strong, electromagnetic and weak nuclear
reactions within a nuclear reaction network produces an
extremely wide range of timescales (as wide as 10'°), much
wider than many other reactive systems.

This range of timescales causes the network ODEs to be
“stiff”” and require specialized techniques to integrate them.

These stiff system solution methods, though more expensive
on a per timestep basis, allow the use of much longer
timesteps, thus reducing the total integration time.



