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2 Essential Questions of 
Nuclear Astrophysics

1) How do nuclei get made?
When?  Where?  Is it an ongoing process? 

2) How does making nuclei affect the stellar 
and galactic environment?

Quiescent or Explosive?  Exothermic or Endothermic?



Understanding Origins means understanding processes that 
transmute nuclei and the sites where these processes occur.

Processes & Sites



 Nuclear Input 
 1) Reaction Rates

For most astrophysical processes, a wide variety of 
reaction rates are needed.

 2) Masses and Partition Function
In equilibrium, rates are unimportant because of detailed 
balance. 
Equilibrium populations depend on relative masses and 
partition functions, the sum of thermally populated levels. 

 3) Nuclear Matter
For Neutron Stars and their natal supernovae, significant 
fractions of a solar mass are at densities similar to nucleons 
in a nucleus. Consider a nucleus with A~1057 held together 
by gravity.



Particles of 
Type #1

Particles of  
Type #2

effective 
area 

 What are Reaction Rates? 

Reactions / cm3 / s =  
       relative flux particles #1 ( cm−2  s−1)
      × number of target particles #2 (cm−3 )
   × effective area of particle #2 in reaction (cm2)



n1 = number of particles of type 1 per volume (cm−3)
n2 = number of particles of type 2 per volume (cm−3)!   = relative velocity (cm s−1)

Reactions / cm3 / s =  
   relative flux particles 1 (cm−2 s−1)
      × number of particles 2 (cm−3 )
   × effective area of each particle 2 for a reaction (cm2)

σ(!) = effective cross sectional area for a reaction (cm2)

Define

Rates into Differential Eqn. 

Then
n1 × !  = relative flux of 1 relative to 2 (particles cm−2  s−1)

Reactions / cm3 / s = (n1 × !) × n2 × σ(!) = n1 n2 σ(!) ! 

As a differential Equation,



Number density, ni, naturally depends on the 
mass density, ρ (g cm−3). 
It is possible to separate this dependence by defining the 
abundance, Yi = ni / ρ NA, where NA is Avagadro’s Number.
Abundance has units of mole g−1  and is the fraction of a 
mole of species i per gram of matter, so it also called Molar 
Fraction.
Multiplying the abundance by the molecular weight of 
species i, Ai, which has units of g mole-1 gives the mass 
fraction, Xi = Ai Yi.

Mass fraction is convenient for presentation as Σi Xi =1.
This is in fact an expression of nucleon number conservation.

 Abundance & Mass Fraction 



Nuclear reactions are not the only process capable of altering 
the mass density and number densities.

Practically, it will be the responsibility of the hydrodynamic 
solver to follow the advection of nuclear species in space. 
Splitting the hydrodynamic changes in density from the local 
nuclear effects, using ni  = ρ NA Yi, allows isolation of local 
changes.

This leaves an ordinary differential equation for just the 
thermonuclear reactions.

 Localizing Nuclear Effects 



 Maxwell-BoltzmanN

Rolfs & Rodney, 

φ(E) ∝ E exp(-E/kT)

φ(E) ∝ E

φ(E) ∝ exp(-E/kT)

Nuclei in the stellar plasma are far from monoenergetic.  
For a given temperature, there is a distribution of relative 
velocities between any pair of particles in the star.
For most circumstances, a Maxwell-Boltzmann Distribution is 
sufficient.



Integrating over the MB velocity distribution gives the 
thermal average cross section, denoted ⟨σ!⟩. 

Define NA⟨σ!⟩  (cm3  s−1  mole−1) as the “Reaction Rate”.

Important Distinction:
Cross Section: function of relative velocity (or energy)
Reaction Rate: function of temperature (not energy)

Thermal average of cross sections needed for rates!
But rate at any temperature depends on σ(E) over range of 
energies.

nuclear Reaction Rates 



The Maxwell-Boltzmann distribution, for velocity, !, as a function of temperature, T, and mass, mi, is

With
Reaction Rate is 

Change to center of mass coordinates: relative velocity, ! = 
(!1-!2), reduced mass, μ, Center of Mass velocity, V, and total 
mass, M

 M-B Details 



Using center of mass coordinates

Since

integration over V yields

Change to center of mass energy E = ½ μ!2

 Reaction Rate in Detail 



Helpful to simplify the rate expression for charged particle 
induced reactions by exploiting two well known energy 
dependences for σ(E) 
Charged particle Cross Sections σ(E)

1) are proportional to probability 
for coulomb barrier penetration 
exp[−(EG/E)½], where the 
Gamow Energy,

2) are proportional to the 
nuclear size, 

The other energy dependencies are lumped together into  
S(E) - the Astrophysical S-factor

 Cross section & S-factor 

V

r



For many reactions, 
MOST of the energy 
dependence in σ(E) is 
described by the 
penetrability & nuclear 
size terms.
For non-resonant 
reactions, S(E) is very 
slowly varying.
Advantageous to work 
with S(E) rather than 
σ(E).

Rolfs & Rodney, pg. 157

 Non-Resonant Reactions 



For many reactions 
of astrophysical 
interest, the energies 
at which 
measurements are 
feasible are much 
larger than the 
energies at which 
the reaction occurs 
in stars.

Extrapolating the S 
factor is much more 
reliable.

 Extrapolating the S factor 

Champagne

14N(p,γ)15O



By writing the cross section as

the Reaction Rate

becomes

S-factor has units of Energy × Area … typically keV-barn, 
MeV-barn where 1 barn = 10−24 cm2.

 Reaction Rate & S factor 



If S(E) is slowly varying, 
the integral is dominated 
by exp [–E/kT – (EG/E)½].
This decreases at high 
energy because of the left 
hand term. 
This decreases at low 
energy because of the 
right hand term.
Maximum at E0, the most 
effective stellar energy 
“Width” of ΔE0, the 
Gamow Window

 Gamow PeaK 



The presence of a 
nuclear resonance 
with an energy 
near the Gamow 
Window can 
dramatically 
increase the 
reaction rate by 
factors of 10 to 
107 in some cases.

The search for these resonances and measurement of their 
properties is extremely important.

 Resonant Reaction Rates 
Rolfs & Rodney, pg. 170



 Gamow Window Examples 

Reaction Site MK E0

p + p Sun 15 6

p + 14N CNO 30 40

α + 12C Red Giant 200 300

p + 17F Nova 300 232

α + 30S XRB 1000 1800

Atomic Mass Atomic Mass

Newton, Iliadis, Champagne, … (2007) 

Gamow Peak applies to direct capture, but only ‘back of the 
envelope’ estimate for resonances.



Non-resonant rates vary 
smoothly as function of 
temperature.
Rate changes by many 
orders of magnitude as 
temperature changes by 
100.
Resonances add features, 
in this case an increase by 
a factor of 10 near 1 GK.
Plot from Computational 
Infrastructure for Nuclear 
Astrophysics.

6Li(p,γ)7Be 13N(p,γ)14O 

 Reaction Rate Examples 

non-resonant

resonant

 nucastrodata.org



Rolfs & 
Rodney, pg. 
174

For single resonances with a narrow total width, the 
resonance energy region effectively becomes the Gamow 
Peak

 Narrow Resonances 



For a Narrow (Lorentzian) resonance the cross sections σ(E) 

where
Jr = spin of resonant state
J1, J2 = spin of reactant nuclei
Er = energy of resonant state
Γin = energy width of reaction channel to form state 
(entrance channel) =  ℏ / τin

Γout = energy width of exit channel =  ℏ / τout

Γtot = total energy width of resonance =  ℏ / τtot

 Breit-Wigner Formula 



For narrow resonances

Integrating the cross section

where

 Resonant Reaction Rates 

height

width



Define
=  Statistical factor 

ωγ  is the resonance strength  (units are in energy).
In terms of ωγ

For multiple narrow resonances

 Resonance Strength 

Linear in strength Exponential in 
resonance energy



The presence of resonances 
can make a dramatic 
difference (orders of 
magnitude) in reaction rates.
Resonances with zero orbital 
angular momentum transfer 
are important (strengths are 
often large).
Especially important are 
resonances with a large 
strength and a low resonance 
energy.

Iliadis et al.   
PRC 53 
(1996) 475

Which Resonances?
25Al(p,γ)26Si

Non-resonant
Direct capture



Reaction Variety
While we have heretofore concentrated on reactions with two 
reactants, astrophysical circumstances include reaction with 
only a single nuclear reactant; for example, decays and 
interactions with photons and neutrinos.
Such reaction rates enter the differential equation in a form 
like

where λi, the decay constant, is related to the half-life, τ½ , 
by λi = ln 2 / τ½.

There are also instances where reactions, or effective 
reactions, including three and four reactants enter into the 
nuclear reaction network, taking the form,



Inverse Reactions
Many of these one nucleon reactions, especially the photo-
disintegration reactions, are the inverse of other reactions in the 
network.  Forward and inverse reactions are linked by time reversal 
invariance, thus their reaction rates are also linked.  
For the reaction pair i + j ↔︎ l + m, this relation depends on the 
energy difference between products and reactants, Qlm, and the 
partition functions, G = Σk (2Jk+1) exp (-Ek/kT), the energy weighted 
density of states.

For the reaction pair j + γ ↔︎ l + m, the characteristics of the thermal 
photon distribution enter into the relation, 



Timescales
Each reaction has a characteristic timescale which depends on 
the thermodynamic conditions and the current composition.
For example, for the 
single reactant case,   

Reactions with multiple 
reactants have timescales 
relative to each reactant.  For 
example, in the two reactant 
case, 

These timescales can vary 
by orders of magnitude. 10-1 100 101
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12C --> n + 11C
12C --> p + 11B
12C --> 4He + 4He + 4He
n + 12C --> 13C 
p + 12C --> 13N
4He + 12C --> 16O 
n + 12C --> p + 12B
n + 12C --> 4He + 9Be
4He + 12C --> n + 15O 
4He + 12C --> p + 15N 
12C + 12C --> n + 23Mg 
12C + 12C --> p + 23Na 
12C + 12C --> 4He + 20Ne 



Bring all of the reaction rate terms together, we have a system 
of ordinary differential equations for the temporal evolution of 
the nuclear composition.  For each species, i, this takes the 
form. 

To specify the number of particles of species i that are created 
or destroyed in a reaction we introduce Ni.
To account for reactions involving the same indistinguishable 
species, we introduce #

Network Equations



Euler’s Methods
The most straightforward discretization of this system of 
equations is 

For Θ =1, this is the explicit, forward Euler method. 
For Θ = 0, this is the implicit, backward Euler method. 
Both Euler methods are first order accurate in time, the 
accuracy improves inversely proportional to the timestep.  
For Θ = ½, this is the semi-implicit trapezoidal method, 
which is second order accurate in time.
Both backward Euler and trapezoidal method are used in 
astrophysics.  Forward Euler performs very poorly because of 
the range in timescales.



Stiff Equations
The wide range of timescales causes the reaction network 
system of equations to be stiff.  Physically, this is a usable 
definition of stiffness.
Note that even a single equation can be stiff if is has two very 
different timescales, for example, Y(t) = e−1000t + e−t + 1.
The preferred behavior of the time step 
Δt is clear
1) For t < 0.01 seconds, Δt ~ 1/10,000 s
2) 10-2 < t < 10, Δt ~ 1/100 s
3) for t > 10, Δt ~ t.
However, forward Euler and many 
methods use Δt ~ 1/10,000 s throughout. 10–4 10–2 100 102 104
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Single Stiff Equation



Explicit Instability
The challenge of stability is 
that even inconsequential 
abundances can destroy the 
solution.
Even in cases where the 
exact solution may 
asymptote to zero, the 
explicit update can produce 
negative abundances if 

for any species.

In contrast, implicit 
methods keep these small 
abundances well behaved.
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Measuring Stiffness
From a mathematical perspective, a system of equations is 
stiff if the timestep must be chosen on the basis of the stability 
of the system, rather than the accuracy of the solution.
A more definition of stiffness can be stated for a system in the 
form 

which has eigenvalues λj.   The system is stiff if real part of all  
λj < 0 and

For many fields, $ ~ 104 -106, but for astrophysical nuclear 
reaction networks, $ ~ 1015 is possible.
For example, in the Sun, p + p → d + e+ + νe  has a timescale 
of billions of years, p + d → 3He has a timescale of seconds!



Backward Euler
While the explicit forward Euler method requires knowledge 
of the derivatives only at time t, the beginning of the timestep, 
the backward Euler method requires this information at the 
future time, t + Δt, making it an implicit method.
The solution of the Backward Euler method is equivalent to 
finding the zeros of the equation

This is done via the Newton-Raphson method, producing a 
trial abundance change of 

Additional iterations can be performed to refine the solution.



Solver Costs
Compared to forward Euler, backward Euler adds the 
computational cost of building and solving the Jacobian 
matrix for each of possibly several iterations for each 
timestep.  This is a considerable cost, a factor of 10 or more.
Yet backward Euler is the more time efficient solver because 
the larger timesteps that can be taken more than ameliorate 
this added cost.
For any method of solving ordinary differential equations, 
including those we consider here, 
total numerical cost = (cost per timestep) × (# of timesteps)
Methods with much larger costs per timestep can be more 
efficient if they allow larger timesteps.



Bader-Deuflhard
Higher order methods attempt to take even larger timesteps 
than backward Euler and/or reduce the frequency of matrix 
solves.  They also can provide rigorous error estimates by 
comparing solutions of differing orders.
One example is the variable order Bader-Deuflhard method.  
This method divided the timestep into m 
substeps with δt = Δt/m and the matrix
In the first substep, solving
For k = 1 to m−1, 

For k = m,
BD is twice as expensive as BE, but may allow larger Δt.

⇒
⇒

⇒



Sparse Matrices
One way to speed up all implicit 
methods is to take advantage of the 
“emptiness” in the Jacobian matrix.
In principal, every species reacts 
with each of the hundreds of others, 
resulting in a dense matrix. 
The Coulomb term in the nuclear 
potential (∝ ZiZj ) causes captures of 
free neutrons and isotopes of H &
He to occur much faster than fusions of heavier nuclei.  
Likewise, photodisintegrations tend to eject nucleons or α -particles.  
Thus we generally need only consider twelve reactions linking it to its 
nuclear neighbors by the capture of an n, p, α or γ and release a 
different one of these four.  
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Asymptotic Method
Implicit methods succeed because they allow larger timesteps 
to be taken without the less abundance species misbehaving.
Finding an explicit method with this same behavior would 
save the cost of building and solving the Jacobian matrices.  
Some such methods have been used in other fields.  One 
example is the asymptotic method.
We can write our network ODE in terms of reaction fluxes, 

where Fij is the flux between abundance i and abundance j.
If we divide Fi into fluxes which add to the abundance of i and 
those that remove abundance from i



Asymptotic Method 2
The flux out of i is proportional to Yi

where the ki
n are rate parameters, λn or ⟨σ!⟩Yn.

Rearranging this equation and substituting into the previous 
equations yields

In the asymptotic limit for species i, F+
i (t) ≈ F−

i(t) and Ẏ ⇒ 0, 
so a first approximation is 

We can improve this by approximating 



Asymptotic Method 3
Using this expression for Ẏ  yields 

This approximation is most reliable when the approximated 
derivative is small, for example when kΔt is large. 
The condition kΔt > 1 is 
precisely the point at 
which forward Euler, and 
many other explicit 
methods, become unstable.  
Thus combining the Asymptotic method for kiΔt > 1 with 
forward Euler allows an explicit update of all species, 
including those that would destabilize forward Euler alone.
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Feger et al showed an asymptotic 
method to be competitive with 
BE for a nova test problem.
The network used has 189 
species. Building and solving 
the matrix represented 87% of 
the network cost.
All told, the asymptotic method 
needed ~ twice as many 
timesteps, but each timestep 
should be cheaper by ~ 1/(1-.87) 
or roughly a factor of 7.
This is preliminary but promising.
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The results are much less promising 
for this example of burning in a 
thermonuclear supernova.
For the first 1.5 seconds, the 
asymptotic method is competitive.  
However, once the temperature 
exceeds 2 GK, the asymptotic 
timestep drops precipitously. 
For temperatures in excess of 2 
GK, many pairs of forward and 
inverse reaction reach equilibrium, 
which challenges the assumptions 
used to derive the method.

Trouble with Equilibrium
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Thermonuclear Equilibria
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At conditions of high temperature and density, thermonuclear 
reaction rates may be sufficiently rapid to achieve Nuclear 
Statistical Equilibrium (NSE) within the timescale set by the 
hydrodynamics of the astrophysical setting.  
In most such cases, the 
strong and electromagnetic 
reactions equilibrate but 
not the weak nuclear 
reactions. 
Thus the NSE composition 
depends on the neutron-
richness, often  represented  
by the  electron fraction, 
Ye = Σ ZiYi.  

5 GK, 109 g cm−3



Nuclear Statistical Eq.
The NSE abundance relation can be derived by extending 
detailed balance through proton and neutron captures, 
building  nucleons into heavy nuclei.  However, it is most 
easily computed via chemical potentials, Z μp + N μn = μ(AZ).
For a Maxwell-Boltzmann gas, the chemical potential is

where G(AZ) and B(AZ) are the partition function 
and binding energy of the nucleus AZ, and 
Solving for Yi yields

2 unknowns, Yp & Yn requires 2 constraints, Ye and  Σ AiYi=1.



Equilibria in Networks
Local equilibrium expressions are common in nuclear reaction 
networks, hidden in three-particle processes.  
The most common example of this is the triple α process, 
4He + 4He ⇋ 8Be                    (Q = −0.09 MeV)
4He + 8Be ⇋ 12C* → 12C + γ (Q =    7.37 MeV)
With τ(8Be) ~ 10−16 s, very rarely does a 8Be survive long enough for 
a third α to capture.  

For T >  0.1 GK, the formation of the excited state of 12C is usually 
followed by a decay back to 8Be

and the reaction rate is 



Summary
The network of thermonuclear reactions linking a group of 
nuclear species creates a system of ordinary differential 
equations that can be solved for the temporal evolution of 
these species.
The presence of strong, electromagnetic and weak nuclear 
reactions within a nuclear reaction network produces an 
extremely wide range of timescales (as wide as 1015), much 
wider than many other reactive systems.
This range of timescales causes the network ODEs to be 
“stiff” and require specialized techniques to integrate them.
These stiff system solution methods, though more expensive 
on a per timestep basis, allow the use of much longer 
timesteps, thus reducing the total integration time.


