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FLUID DYNAMICS

Fluid Dynamics, subsuming both hydrodynamics and
acrodynamics, 1s a continuum description of the collective
behavior of a large number of particles.

The equations of fluid dynamics can be derived from kinetic
theory 1n the limit that the collisional mean free path, 7 e
much smaller than the macroscopic scales of interest, L.

Thus we are concerned with the bulk velocity of the fluid, u,
while the random velocity of individual fluid particles is only
considered to the extent that they form an internal energy.

Key to the behavior of fluids 1s that they, like solids, deform
under stress. However, unlike a solid, a fluid shows no
tendency to return to the former state when the stress 1s
removed.



CONTINUITY

Quantity of matter can be described by the mass density,
which changes in time and space.

The change of p with time 1n the
P p(x1) PR box requires a “flux” of mass
across the boundary at velocity u.

More formally, jt p Ve / (pid) - 1 dS

Applying the time 1ndependence of V on the left and
divergence theorem on the right yields

/—dV——/V-(pﬁ’)dV

Since this is true for arbitrary V, dp Continuity
i +V - () =0 Equation



DEFINING DERIVATIVES

When considering a moving fluid, there are two natural
frames of reference.

1) Eulerian Coordinates, which are fixed in space.
2) Lagrangian Coordinates, which move with the fluid.

To define a Lagrangian (or material) Derivative of a quantity
f, we must consider both changes that are local in space and
those that result from movement.

D af v
d [ al‘
Since V-(ba) = a-Vb + b(V-a), the continuity equation can be
transformed from
Dp

6,0 =
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CAUSING FLUID TO MOVE

We next need to understand what generates the velocity, u.

For a co-moving volume, the total momentum 1s fv pu dV and
the time rate of change comes entirely from external forces.

These take the form of external body tforces, f, e.g., gravity,
and surface forces, e.g., pressure, P.

i/piidV=—/PﬁdS+/pde
dt :

Applying the Chain Rule to the left side ylelds since pV is

invariant for

a - = Du CO-moving
dt /Vpu i /p dV+/ Z/ volumes.

Applying the divergence theorem to the right side yields

—/Pﬁds+/pde=/(—VP+pf)dV
S V V



EULER EQUATION

Combining these yields

/p@dV=/(—VP+pf)dV
y Dt Vv

or, since this applies for arbitrary volumes,

Du -
= — (N P%
th ( pf)

Written 1n terms of coordinates fixed in space, this becomes

- Euler

Ol s
P <E + - V)u) = Le Vi) Equation

To make sure we see the physics of this equation, we can

rewrite this as 5
dpu S -
?-FV',OL{L{:—VP‘F,D]C



VISCOSITY

When we wrote the effect of the surface pressure as [g P nds,
we 1mplicitly assumed that viscosity was unimportant.

In the general case, F; = [s X; P o; n; dS, where o;;is the stress
tensor, rather than [ P n; dS.

For gases and simple liquids, we can define a dynamical
viscosity, i, in which case the stress tensor 1s

2 2 ox; 0x; 3 .
In this case, the momentum equation becomes  Navier-Stokes
1 > & Equation.
p%lz=—VP+pf+,u<V2u+%V(V-ﬁ)> 1

i 1s generally very small 1n astrophysics and the Reynolds
number, the ratio of inertial forces to viscous forces, 1s large.



MECHANICAL ENERGY

The Euler equation includes a gradient of the kinetic energy,
requiring an equation to evolve the kinetic energy.

Taking the dot product of u/p with the Euler equation

u Du u g
g = = (= NP )
gDt D

provides such an equation
- mechanical

D (1. 1. =
= <§u ) — —;u -VP+u- f energy equation

Simply, the kinetic energy changes in response to work done
by pressure and body forces.

This approach may seem arbitrary, but 1s equivalent to
calculating the work done by a force as

ulF’l = uma = um@ = i (1142)
dt dt \2



ENERGY CONSERVATION

Of course, kinetic energy 1s not conserved, rather it 1s the total
energy, kinetic + internal (thermal), Yau? + U.

If we expand our energy equation to include the internal
energy, we must add terms for the heat generated within the
volume, €, and the flux of heat across the boundary, F.

: (lﬁ2+U>pdV=—/L7-PﬁdS+/ﬁ-fpdV
S V

dtJy X2
+/epdV—/F.fidS
V S

Applying the divergence theorem to replace the surface
integrals /ﬁ-fidSz/V-ﬁdV
S 14

/L?-Pﬁ’dSz/V-PZZdV
S V



ENERGY EQUATION

As 1n the prior derivation, the invariance of pV for co-moving
volumes simplifies the energy time derivative.

& [r1 Bt DU
Sl +U> dV = —<— >+/ La o
d1 V<2” i /Vth > 7

Once again, we can also remove the volume integral that
appears in each term, yielding.

e v =SV Piipu- f o= NiE
’pr \2 ’"Dr it L0

Expanding the co-moving derivatives, and merging like
terms, leaves

== U V . = U
dtp(Zu +U)+ (p(zu + U)u

D<1_,2> DU i
u

=—V-Pi+pi-f+pe—V-F



EQUATION OF STATE

The pressure, P, appears 1n both the momentum and energy
equation, yet we have no equation for its evolution.

For all matter, there exist thermodynamic relations linking the
pressure, density, temperature, internal energy, entropy...

These are the Equations of State (EoS).
The most widely known 1s the ideal (monatomic) gas EoS
P V=R T and-U =35 R.T-thusiP-=25 pl:

The more generalized version 1s cast in terms of the adiabatic
index y = Cp/Cy, the ratio of specific heats.

P=(@-DpU

where y = 5/3 for a monatomic gas.



POLYTROPIC FLUID

For the adiabatic case, the 1deal gas EoS can be written as

g
P =Ky’ in whichcase U = P D0

Yo S o]

Such EoS are often written in the form
P = Kp1+% where 7 1s called the polytropic index.

These polytopic EoS played a large role in early calculations
of stellar structure and remain useful because a number of
physical states behave approximately as polytropes.

For example, both the ideal monatomic gas and a non-

relativistic degenerate gas obey P = Kps/ -

For a relativistic degenerate gas P = Kp4/ 3, and stars 1n
radiative equilibrium also follow this relation.



HYDROSTATIC EQUILIBRIUM

Simplest application of hydrodynamic 1s hydrostatics (u = 0).
The hydrostatic limit of the Euler equation 1s Hydrostatic

out

Gravity

S

Equilibrium. Pressure I

Numerically this takes 9§
the form

dP _ GM()p(r) I

2 : - ¢ =m)
Physically, this says the
inward gravitational

force must be balanced 1 ‘
by the outward pressure.

This relationship 1s key to calculating the conditions in a
star’s interior.



STANDARD SOLAR MODEL

Photosphere

Hydrostatic versions of the continuity

and energy equation give us -
Mass Continuity Energy Generation
g0k = 47rr2p(r) e = 47rr2p(r)€(r)

dr dr

Together with an equation for
Energy Transport, which depends
on the dominant energy transport
process, these combined with
boundary conditions like

M) =0, L(0) =0, &
M(RCD) = M@a L(R@) — L@, etc. ;

allow us to calculated the stellar models.



THE EQUATIONS WE SOLVE

In VH-1, and many similar hydrodynamics codes, the 3D
problem 1s directionally-split into separate 1D solutions along
the representative directions. This simplifies the equations.

To allow tor different coordinate systems,
dp O0Apu . .
= | - = 0 we work 1n terms of a volume coordinate
V with cell cross section A
dpu 0Apu? ool £ Gradients use a generalized
0 ¢ oV i 0y < spatial coordinate, y
dpv  dApuvu T dpw OdApwu Momentum is also
oLt O 0 O advected transversely.
opE 0ApEu 0ApPu

. LS - ouf Total energy E =

o0 el V(> +v*+w?) + U

P=((y—-1pU Equation of State




SPATIAL DIFFERENCING

Transforming continuous variables, f(x), to variables
represented on a discrete grid, f;, we must approximate spatial
derivates as differences. However, the choice 1s not unique.

For example, df/dx at x = x; can be written as

o i1 =1 forward difference
ox |j AX

% ~ Ji = Ji-1 backward difference
ox |j AX

o Ji+1 = Ji-1 centered difference
o0x |j 2AXx

Higher order derivatives touch more points on the grid, e.g.,
oo Jee 2 k] 2

N
n

ox2| Ax?




ORDER OF ERROR

Difference choices of derivatives affect the error the comes
from mapping to a discrete grid. One can estimate this error

by calculating f;,1 = f(x;41) = f(x/+Ax) and f;_; = f(x;_1) =
f(x;—Ax) using the Taylor series
f(x+h) = f(x)+h% + h? O°f +

% 0x 2 0x?

to calculate the error as a function of Ax.

For both forward and backward differencing the leading error
in the approximation of 0f/dx is « (Ax) 0°f/ox?, thus these
approximations are O(Ax). For centered differencing, the
error is O(Ax?) because the 9°f/dx? terms cancel.

While having a smaller truncation error, centered differencing
has a tendency to spread sharp features which 1s determental
In some circumstances.



CAPTURING SH

Many problems in nuclear
astrophysics include shocks
and compositional (contact)
discontinuities.

Simple differencing schemes
are challenged by sharp flow
features like these.

I.ow order methods tend to
diffuse these features over
many zones.

Higher order methods are less
diffusive, but can add
considerable dispersion (noise).
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RIEMANN PROBLEM

An alternative, from Godunov, 1s to

calculate fluxes by assuming a

Riemann problem at each interface. -

For left wave, P'— P;+ Wy(u —u;)) =0 t=0
3

For right wave, P"— P, — W.(u"—u,) = 0 ¢

where (P,, u,) & (P, u;) characterize
the unshocked right and left states,
(P", u’) are the unknown shocked

state and : z>O U

e B e
W/S = p.c, 1 4 i S § 3 § §
_ 2y P

S

upfloejorey
AInunuodsIq
10B1U0))
AO0YS

(P”, u”) can be calculated (iteratively) from the right and left
wave equations and from these fluxes at the interfaces.



PPM

The Piecewise Parabolic Method,

introduced by Colella &
Woodward, improves on

Godunov’s method by using a

piecewise parabolic

reconstruction of flow variables
(akin to Stmpson’s rule for
integration) in place of piecewise

constant.

It adds explicit steeping of contact
discontinuities and flattening of

overly narrow shocks.

FILASH and VH-1 are both

implementation of PPM.

~ Fryxell et al (2000)




HEAT TRANSPORT

To quantify how the tremendous heat of stellar interior 1s
transterred to the surface, we need an equation for energy
transport, d1/dr = ?

The form of the equation depends on the means by which the
energy moves.

In general, there are three modes of heat transfer

Conduction: The transfer of energy through motions on the
microscopic scale (atoms or molecules).

Convection: The transfer of energy through macroscopic fluid
motions.

Radiation: The transfer of energy via electromagnetic
radiation (other forms of radiation are possible).



RADIATION FORCE

Blackbody radiation exerts a pressure equal to 3 of the

radiation density. p 4ogp
ra

a
e
3 C

The decline 1n temperature from the center of the star toward
the surface causes a spherical shell in the star, thickness dr, to

experience a temperature gradient, dT.

Inner Surface: Outer Surface:
P (r) = §T4 P. (r+dr) = g (T+ dT)*
4
Syt <1 : dT) & 2t <1 +4d—T)
3 T 3 T
This produces a net force,

22T4 4dT

B = A7r? [Pmd(r) = dr)] ~ —4rxr 3

ra

%

12” PT3dT



RADIATION MOMENTUM

An alternative way to approach the same problem is 1n terms
of the momentum of photons that are absorbed.

The momentum of a photon 1s p = E/c.

The total rate of photon energy passing through the shell 1s
L(r), thus the total photon momentum 1s L(r)/c.

The fraction of the photons absorbed passing through a shell
of thickness dr 1s

dl/l = — n(r) o(r)dr =dr=— p(r) x(r)drif dr < 1

The rate at which momentum 1s transterred to the matter by
absorbed photons is a force,
-~ L(r)dI L(r)

F = = = : p(r)k(r)dr




RADIATIVE HEAT TRANSPORT

With 2 equations for F,,; one in terms of a temperature
change and the other 1n terms of a distance and opacity, a
temperature gradient can be constructed.

L
B = 12” FPTdT = i”) o(r)k(r)dr

The resulting gradient,
dT" _ 3p(r)k(r)L(r) _  3p(r)x(r)L(r)

dr ~ 167mac T(r)3r? 6470 ogT(r)3r?
1s called the equation of radiative energy transport.

In the Sun, a typical value of this gradient 1s

ATE Lsurpace = 1¢ _ 5800K — 1.5 X 10'K
Ar o R D 7.0 x 105km
Earth’s Troposphere ~ — 7 K km™!

~ -20K km™!



CONVECTIVE TRANSPORT

Convective energy transport 1s a turbulent process by which
hotter, deeper parcels of fluid rise, forcing cooler fluid to sink,
and carrying energy upward.

It you watch a pot of water on the
stove, convection does not begin
the moment the heat 1s applied to
the bottom.

Instead, a temperature gradient
between the heating element and
the surface must build.

Convection begins only when it reaches a critical value.

This critical gradient 1s called the adiabatic temperature
gradient.



CONVECTIVE STABILITY

Consider a small blob of fluid, in a star or a cooking pot.

It has pressure P, and density p,, compared to the ambient
pressure P and density p.

It the blob 1s perturbed upward, to a lower pressure region,
P + dP (dP<0), 1t will expand until P, + dP, = P + dP.

What happens next depends on the density. If it 1s denser
than the new surroundings (p,+dp, > p +dp), 1t will sink
back down and the fluid 1s stable.

However, 1t p, + dp, < p + dp, the blob 1s buoyant and will
keep rising, marking the onset of convection.

Since 1nitially p, = p, the stability condition 1s dp, > dp.



ADIABATIC EXPANSION

It this blob moves upward rapidly, there 1s insufficient time
for 1t to exchange heat with the ambient medium.

A process 1n which heat 1s neither gained or lost 1s called
adiabatic. Adiabatic processes are also 1sentropic.

For an adiabatic process PV?1s conserved.
y 1s the adiabatic index (e.g., y = 5/3 for monatomic gas).

Writing this 1n terms of density Pp~" and taking the derivative
LLSE A
Pb B s b
Applying the 1nitial condition, p, = p & P, = P, and the
requirement of hydrostatic equilibrium dP;, = dP,
pp AP, oty P der
e el yP dr

dpb —



STABILITY CONDITION

Applying this expression for dps to the stability condition

d
dp, = £ der > dp = —pdr
yP dr dr
Simplifying yields 1 dP 2 1dp
vl drs o padr

To compare the convective stability to the radiative energy
transport requires conversion to d1/dr. For an 1deal gas,

dP _ pk dT kT dp _ PdT L Pdp

E_,umpdr ,umpdr_Tdr'pdr

Rearrangementreveals, 1dp 1dP 1dT
p dr - Pdr T dr

Thus the stability condition ledPe ol Poe . e
can be written, yP dr = Pdr <L dr




ADIABATIC GRADIENT
Grouping the dP/dr terms, and multiplying by T yields

1\ T dP dT
i o) et S e
vl Pdr dr
The left-hand side of this equation 1s called the adiabatic
temperature gradient. At any point that the actual

temperature gradient (the right-hand side) obeys this relation,
convection 1s suppressed and radiative transport dominates.

Where this relation 1s not met, convection results, forcing the
actual temperature gradient toward the adiabatic temperature
gradient.

The equation of convective  dT _ o 1NIr) dP
energy transport is therefore  dr vy ] P(r) dr



STELLAR CONVECTION

Convection 1s very important in stellar evolution.

Its proper treatment 1s a topic of much research (& debate).
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http://scitation.aip.org/search?value1=W.+D.+Arnett&option1=author&noRedirect=true
http://scitation.aip.org/search?value1=W.+D.+Arnett&option1=author&noRedirect=true
http://scitation.aip.org/search?value1=C.+Meakin&option1=author&noRedirect=true
http://scitation.aip.org/search?value1=C.+Meakin&option1=author&noRedirect=true
http://scitation.aip.org/search?value1=M.+Viallet&option1=author&noRedirect=true
http://scitation.aip.org/search?value1=M.+Viallet&option1=author&noRedirect=true

RAYLEIGH-TAYLOR

Another instability of interest to nuclear
astrophysics 1s the Rayleigh-Taylor instability.

When a denser fluid lies “over” a lighter
fluid, the amplitude, #, of a perturbation of
the interface of wavelength 2n/k will grow
exponentially

n(t)=no expl(Agk)”1]

where A is the Atwood number A = s P

Put P
This 1deal fluid solution 1s modified by
viscosity and diffusivity, which inhibit high-
wavenumber (short wavelength) growth.
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This also occurs when acceleration, as by a
shock, takes the place of an eftective gravity.
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3D RT

Rayleigh-Taylor instability between

two stable stratifications
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Megan Davies Wykes and Stuart Dalziel
DAMTP, University of Cambridge, UK  axivorgabs/i2102591


http://arxiv.org/abs/1210.2591
http://arxiv.org/abs/1210.2591

THERMONUCLEAR RT

With ongoing energy production from nuclear reactions, the
hot, low density matter remains lower in density as it rises.

This allows
successive
generations of
Rayleigh-Taylor
instability to build
on each other.

Here we see a
narrow region from
a thermonuclear
supernovae.

Time(sec): O



KELVIN-HELMHOLTZ

Another commonly
encountered hydrodynamic
instability 1s the Kelvin-
Helmholtz instability.

It occurs when a velocity
shear exists between two
layers 1n a fluid.

The motion of the higher
velocity fluid introduces
vorticity at the interface.

The unstable interface can
grow to include the entire
volume.

www.astro.virginia.edu/VITA/ATHENA/kh.html


http://www.astro.virginia.edu/VITA/ATHENA/kh.html
http://www.astro.virginia.edu/VITA/ATHENA/kh.html

KELVIN-HELMHOLTZ IN 3D

In 3D, KH starts as 1n 2D, but soon develops lateral motions.

www.lcse.umn.edu/index.php?c=movies



http://www.lcse.umn.edu/index.php?c=movies
http://www.lcse.umn.edu/index.php?c=movies

STANDING ACCRETION SHOCK

Numerical simulations of a standing accretion
shock, a phenomenon thought to occur during i
core-collapse supernovae, led to the discovery "

of a new 1nstability by Blondin & Mezzacappa

(2003).

Studied by many groups using simplified
hydrodynamic models and seen by most
groups doing realistic supernova models, 1n
cases where the shock stalls for a sutficient
time.

However, the mechanism 1s still a subject of
debate, with some arguing it 1s an acoustic
instability and others arguing advective-
acoustic.




In 2D, the SASI
1s dominated by
a sloshing mode
dominated by
the =1
component.

The net effect 1s
to push the
accretion shock
boundary
outward.

SASI IN 2D




SASI IN 3D

In 3D, the [ = 1 sloshing mode transtorms to an m = 1
spiral mode.

Blondin & Mezzacappa (2007)



SHALLOW WATER SUPERNOVA?

Recently, Foglizzo
and collaborators
discovered a similar
instability in a
shallow water
system, SWASI, a
Shallow Water
Analogue of a
Shock Instability.

These also show
initial sloshing |
modes that =g ~.Foglizzo, Mas_?gtﬁufe(t,'& ﬂu\rand (2012)
sometimes transition | :
to spiral modes.




CONCLUSIONS

Equations of Hydrodynamics are conservation equations for
mass, momentum and total energy, as modified by external
surface and body forces, internal energy generation and
surface energy flow.

The Equation of State closes the system of equations.

Godunov methods, including PPM, use the solution of
Riemann problems to calculate fluxes across cell boundaries,
allowing better capture of shocks and other sharp features.

Convection and a number of other instabilities (Rayleigh-
Taylor, Kelvin-Helmholtz, SASI) are important for nuclear
astrophysics by altering the fluid flow 1n which nuclear
reactions occur and the distribution of the newly formed
elements.



