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6 FROM 1, 1 FROM ANOTHER

The core collapse
mechanism results in
supernovae with quite
varied spectra and light
curves.

Differences are due to
variations 1n the stellar
envelope that surrounds
the central engine.

In contrast, the Type Ia
SN are remarkable
similar, suggesting a
mechanism with little
variation.

BLUE MAGNITUDE

SN 1987A

| | | | | ! | | |

Wheeler 1990

I-P

Ib I-L

1 | l | |

0 5 100 150 200 250 300 350 400
DAYS AFTER MAXIMUM LIGHT




ARCHIVED PROGENITORS

Archives of digital photometry,

especially from Hubble Space
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WIND INTERACTIONS

Supernovae begin interacting with their environment almost
immediately, starting with their own stellar wind.

In the case of SN1987A, the first interaction was a light echo
illuminating a hourglass shaped wind.

The UV flash of the supernova
ionized gas in the waist of the
hourglass and along both funnels.

The supernova shock then struck
the central ring, which was ejected
20,000 vears earlier.
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320 YEAR OLD SUPERNOVA

Cassiopela A

Radio (VLA)

Infrared (ISO)

Supernova
deposits
10*J of
Kinetic
Energy 1nto
the ISM,
providing a
major
source of
heat to
interstellar
gas



CENTRAL SOURCE

Even with complex morphology of supernova remnants it 1s
generally possible to reconstruct their origin.

Positive and negative photographs of the Crab Nebula 14
years apart show the the gaseous filaments moving away




OLD SUPERNOVAE

Supernova remnants sweep up the interstellar medium as they
spread, which gradually slows the ejecta. Thus old remnants
lose their spherical shape as they encounter irregularities in
the interstellar medium, including other supernova remnants.

Vela SNR 1s

3° on the sky,
the Vela
pulsar sits at
the center of

the Vela SNR.

Gum SNR 1s
40° on the

sky.

t ~ 1,000,000 yr

© 2006 Axel Mellinger



REMNANT PHASES

Supernova remnants go through 3 stages of
propagation as they age.

1) Free Expansion Phase: Relatively cold
ejecta imtially free expands into cold ISM.

As 1t sweeps up and shocks ISM matter, a
reverse shock forms, heating the ejecta.

2) Sedov-Taylor Phase: Shock expands
adiabatically, driven by pressure.

3) Snowplow Phase: Once the temperature
in shocked ISM drops below 10° K, a
cooling layer develops behind the shock,
robbing pressure support. Shock 1s now
driven by momentum.




LOCAL BUBBLE

Our Sun lies near the
center of a 100 pc
diameter bubble of hot §
gas. This local bubble §
encompasses most of
the nearby stars.
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PLERION

Many supernova remnants caused by core-collapse
supernovae combine the shell caused by the blast wave with a
pulsar wind nebulae.

The Crab
nebula 1s an
example
where the
shell remnant
1S missing
leaving only
the PW
nebula or
plerion.




PULSAR WINDS

The blast wave carries 10** J into the supernova remnant. This
is augmented over the course of thousands of years by 10* J
of pulsar magnetic dipole radiation and pulsar winds.




INVISIBLE SUPERNOVA

As bright as supernova are, you might think they can be seen
whenever they occur nearby, but this 1s untrue.

As young stars, O & B stars occur predominantly in the
Galactic Disk. In the disk, the UV and optical light that
carries much of their light is heavily extinguished by
interstellar dust, making some supernova invisible.

The young supernova remnant
G1.94-0.3A lies 1n the direction
of the Galactic Center, 1n the
Sagittarius. From X-ray and
radio observations, we know 1ts
angular expansion rate and size,
we can calculate an age of 140
years, but no SN was seen.




RICH IN HEAVY ELEMENTS

Hughes, Rakowski, Burrows & Slane 2000
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Supernovae from Massive Stars produce most of the elements
from Oxygen through Silicon and Calcium and half of the

Iron/Cobalt/Nickel.

They may also be responsible for the r-process.
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GOLDEN AGE OF
OBSERVATION

Sun

Incredible array
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OBSERVING NEUTRINOS
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OBSERVING GRAVITY

The Laser Interferometer
Gravitational-Wave

Observatory (LIGO) has
detectors 1n Livingston LA
and Hanford WA.
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In the event of a galactic
CCSN, they hope to detect
gravitational waves from
the motions of matter deep
within the supernova.



STELLAR STAGES

. : Evolutionary Tracks off the Main Sequence
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STELLAR STAGES

. : Evolutionary Tracks off the Main Sequence
When H 1s exhausted 1n yMTmM a
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STELLAR STAGES

. : Evolutionary Tracks off the Main Sequence
When H 1s exhausted 1n yMTmM a
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RUSSELL-VOGT THEOREM

The final fate of a single | fowmass stars massiv sar

star depends on many Mass 1s Destiny
facets, the most solar metallicity of_”o . é
important 1s its mass at R :
birth. ' :

Mass loss is also e By
important. Very wenon /il g%
Massive stars can lose FURCTTTY
much of their envelope, ;- L
leaving the HeorC/O ¢ ©
core visible. .
Metallicity, the | ese Biriopmi il B3 OB
abundance of non-H and 3 : : : ‘O‘O

He iS also important. nitial mass (solar masses)



INSIDE A MASSIVE STAR

Stars that 1gnite
Carbon burning
meet a very
different fate.

They progress
through Carbon,
Neon, Oxygen
and Silicon
burning, leaving
a core of Iron
surrounded by
concentric layers
of lighter
elements.
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STELLAR BURNING STAGES

Process Fuel Ash Temperature | Duration
H Burning | H He 30 MK 10! s
He Burning | He € 200 MK 1019 s
CBumning | C |O,Ne,Mg| 800MK 107 s
Ne Burning | Ne O, Mg 1.5 GK 107 s
O Burning | O | Mg-Si-S 2 GK 107 s
Si Burning | Si | Fe-Co-Ni 3 GK 10° s

Collapse up to Th? > 3 GK 0.3 s

Nuclear reactions drive the evolution of stars with the ash of
each stage forming the fuel for the next stage.
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END OF A MASSIVE STAR

By the time the helium shell burning 1gnites, the core 1s
effectively decoupled from the envelope.

The star’s remaining life 1s less than the Kelvin-Helmholtz
timescale, 7 ~ U/L ~ GM?/RL ~ 10* years.

The visible luminosity 1s largely
provided by the helium shell.

In the core, T. > 500 MK lead 0.0l Rg 1000 R,

to neutrino-pair production, : ‘_f,y?—’ |
allowing the luminosity of the Helium |
core to escape primarily as Hydrogen
neutrinos.

Successive burning stages proceed N
rapidly to form an iron core with lighter element shells
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WEAK REACTIONS ON IRON

PEAK NUCLEI

In the 1ron core of a
massive star the electron
chemical potential
becomes large, enhancing
electron capture.

Iron core mass and
leptonization depend on

e~ capture and [ decay
rates for A~63.

Modern Shell Model
calculations reduce the
ec rate, altering stellar
models.
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FUTURE OF STELLAR MODELS

Model: ob.2d.e {entire domain) Time = 530 sec
25 _

20 _
15 £

10 =

©

(-
I

v -

Net Enerqgy Generation [1e+13 erq/g/s]

Meakin & Arnett (2006)

Stellar Evolution models are only beginning to transition to 3D.



CORE-COLLAPSE SUPERNOVA

e i ek A Core-Collapse

on an onion-layer structure .
Supernova 1s the

of chemical elements
rondoesnorundergonuciearrusin,somecre 111€VItAble death
becomesunable to generate heat. The gas pressure

<CT7%, N knell of a massive
o = star (~104+ My).

- -~
/f \\\ °
L) Once central 1ron

core grows too
massive to be

Withina second,

the core collapses
to form a neutron star,

i i supported by
shock wave
electron
Neutrinos pouring out of the degﬁnﬁracy
nascent neutron star propel the
shock wave outward, unevenly pressure, Collapse
ensues,

Shock

)) _.accelerated by
electron capture.

| Hillebrandt,
Janka, Muller
orsis  ScCi. Am. 2006



SPHERICAL FAILURE

General Relalivistic Shock Trajeclories

The need for aspherical effects =

Liebendorfer, Messer, NH 13 15
comes from the failure of | Mezzacappa, ..(2004) | wizus
spherically symmetric models.
Even with fully modern . /
physics and spectral z‘/ w\

Boltzmann neutrino transport, 9

1D models tail to explode

because heating in a stratified L R P

star is inefficient. ——

The exception 1s models which % 3 =
& = = =

boost the luminosity by some

means, for example, Wilson’s =
models which invoke PNS L
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CHIMERA has 3 “heads” ®

* Spectral Neutrino Transport (MGFLD-TRANS, Bruenn)
in Ray-by-Ray Approximation

*  Shock-capturing Hydrodynamics (VHI1, Blondin)

*  Nuclear Kinetics (XNet, Hix & Thielemann)

Plus Realistic Equations of State, Newtonian Gravity with
Spherical GR Corrections.

Models use a variety of approximations

Self-consistent models use full
physics to the center.

Leakage models simplity the transport.

Parameterized models replace the core
with a specified neutrino luminosity.

Ray-by-Ray Approximation



THE EARLY PHASE

For the first ~100 ms after bounce, the supernova shock 1s essentially
spherical, with 1D models 1identical to 2D models.

Once the Standing Accretion Shock Instability (SASI) and neutrino-
driven convection begin, the shock deforms and gradually progresses

outward 1n radius.
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THE EARLY PHASE

For the first ~100 ms after bounce, the supernova shock 1s essentially
spherical, with 1D models 1identical to 2D models.

Once the Standing Accretion Shock Instability (SASI) and neutrino-
driven convection begin, the shock deforms and gradually progresses
outward 1n radius. 500 ———

One notable feature
1s the considerable
delay in launching
an explosion,
>150-200 ms
slower compared to
older models.
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100 —
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THE EARLY PHASE

For the first ~100 ms after bounce, the supernova shock 1s essentially
spherical, with 1D models 1identical to 2D models.

Once the Standing Accretion Shock Instability (SASI) and neutrino-
driven convection begin, the shock deforms and gradually progresses
outward in radius.

éb—o_""l""I""I""I""I""""I""
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is the considerable  _ 250F |— S5 D -
delay in launching 2 '
an explosion, '% 200 §
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SUPERNOVA: THE MOVIE

Chimera model; B12-\WHQ7  Time = 800 ms

F

. Entropy (k_b/nucleon)

1
8 125 17 2 26 20

~1 Million
CPU Hours on
256 proc.




HOW TO MAKE AN EXPLOSION

10 —

SASI & Convection
gradually push the
shock outward,
increasing the size of
the heating region until
heating timescale
(Theating) 1S smaller than
advection timescale

(T advection) .

Much of the explosion
energy comes from the
neutrino heating region,

below the ejecta, 1n the
form of PdV work and

advected internal energy.
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NEUTRINOS AT WORK

The 1nitially spherical gain surface between the cooling and heating
regions begins to distort ~70 ms after bounce.

Beginning ~120 ms, the heating region 1s marked by low entropy
downflows, with the strongest heating at their base.
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SHOCK SHAPE
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The shape of the shock 1s #@g B15-WHO7
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SHOCK SHAPE

The shape of the shock 1s
determined by the interplay
between convection and the
SASI, with large individual
plumes producing strongly
prolate to mildly oblate
shocks, depending on the
plume’s orientation.
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LATE TIME BEHAVIOR

The accretion rates decline
steadily as less dense layers
accrete through the shock.
The developing explosion,
especially cutting off of the
downflows, accelerates this.

However, the accretion rates
level off at late times.

The heating rate likewise
shows a marked decline
once the explosion cuts off
the downflows, but
continues to show heating
episodes to late times.

Mass Accretion Rate [M_ s7]
o

0.01 ——

Heating Rate [B s]
o > o 3 o 3

o
O 1

10:| —

—
T

— B12-WHO07
— B15-WHO07

B20-WHO07
— B25-WHO07

o

200 400 600 soo 1ooo
Time from Bounce [ms]

1200

1400

— B12-WHO07
— B15-WHO07

B20-WHO07
— B25-WHO07

\A\% ‘3 uh

i, A h.‘ .
\V« \W v, Y S k‘%u .

2oo 600 800 1000
Time After Bounce [ms]

1200

1400



EXPLOSION ENERGIES

Beyond the most basic observable, an explosion, we can compare to
the myriad of other potential observations, starting with the kinetic

energy of the explosion.

Unfortunately, models are still

in the stage where internal

energy dominates, so we must
estimate the explosion energy

by assuming efficient
conversion of E; = E;.
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EXPLOSION ENERGIES

Beyond the most basic observable, an explosion, we can compare to
the myriad of other potential observations, starting with the kinetic

energy of the explosion.

Unfortunately, models are still
in the stage where internal
energy dominates, so we must
estimate the explosion energy
by assuming efficient
conversion of E; = E,.

3

25+ -]
SN 2009kr

/M
e
>~ 2 N
&n
5
3 | SN 1987A
M sk +— N
g SN 2004et /'I ] ‘ SN 201 2ec
o p—
w2
Z SN 2004A 4 {
— 1+ N
o
< —t 30044 OO
i SN 2004dj
05— t t N

10 15 20 25
IMS Progenitor Mass [M

o

ol

1.6_ T T T | T T T | T T T | T T T | T T T T T T | T T T

+ ..
I == === E = Energy sum over positive energy zones -

— E+0V =E" + Overburden -

[
N
T

+ + . .
E =E _ + Nuclear recombination -
ov,rec ov

Explosion Energy [B]
T

N
T

o
N
I| T

1 1 I VLol N N V- 4 1 1 | 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400
Post-Bounce Time [ms]

One can construct a “diagnostic”

enetgy, E-— B+ B B

summed over zones where ET > 0.

To this we add contributions from
and removing

the envelope.
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GRAVITATIONAL WAVES

GW signals (by Yakunin &
Marronetti) are a qualitative match
to predictions based from
parameterized models by Murphy,

Ott, & Burrows (2009)

However, in this self-consistent
model time for the explosion to
develop 1s significantly shorter.
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ANATOMY OF A GW SIGNAL

Gravity Wave signal shows 3 separate phases
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3D SIMULATIONS

CHIMERA3D (2009)
Ran 150 ms on 11,552 processors (12M
CPU-hours) with 304 adaptive radial
zones, 2.4° 1n latitude & longitude.

3D model shows similar behavior to 2D
at 150 ms after bounce.

To match 2D, resolution of 0.7° in
latitude and longitude would be needed.
This requires 131,072 processors.

CHIMERA3D (2011)
Ran 20 ms on 8096 processors with 512
adaptive radial zones, 2.8° in latitude
and longitude, limited by Courant
timestep of 38 nanosecond at the pole.

To run models to late times requires
freezing the core or a different grid.

~ Bruenn, Mezzacappa, Hix, ... (2009; J Phys Conf
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C15-WHO7 3D

One solution 1s to | Wl
: Alligele) \WGE

use fewer zones in LAUOD y ta

latitude & longitude.

However 2.8° 1s
already % of our
2D resolution.

For our 2013

model, we’ve

adopted a grid

which 18 uniform

1n cosine of 23.00
latitude, with 180 18.00
zones of widths 13.00
from 24° to §8°. -
Consumed 70M 3,000
core-hours 1n 2013 : o
to run ~200 ms. Time = 0.130154 QLEE =



How DOES 3D COMPARE?

350

The vital question 1s “How
well do 2D models follow
the behavior of 3D?”

2D Entropy 188 ms

Parameterized models
produce mixed answers to
this question. Some find |

3D to be favorable, but R
most find 3D to impede

the explosion.
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How DOES 3D COMPARE?

The vital question 1s “How
well do 2D models follow
the behavior of 3D?”

Parameterized models
produce mixed answers to
this question. Some find
3D to be favorable, but
most find 3D to impede
the explosion.

Thus far, we find that 3D
models stay quasi-
spherical longer and
exhibit longer delays the
onset of explosion.
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This agrees with self-consistent models from Hanke et al (2013).



REALISTIC?

Core-Collapse Supernovae combine an
: nuclear physics (electron and neutrino capture on nuclei;

nuclear EoS; thermonuclear kinetics), magneto-hydrodynamics

(MHD), radiation transport, General Relativity, etc. This requires

multiphysics modeling.

A series of spherically
symmetric studies uncover some
of the physics (and level of
numerical approximation)
required to make a model
realistic, at least 1n the early

phases of CCSN.

These reveal the danger of
ignoring GR, inelastic scattering
and observer corrections.
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NUCLEI IN CORE COLLAPSE
SUPERNOVAE

Much of the active phase of the neutrino reheating mechanism
occurring in matter composed of shock-dissociated free nucleons.

Thus the occurrence of nucle1 and the application of nuclear physics
1s limited. Exceptions include

+ Weak interactions of pre-shock matter, during collapse and above
the shock after bounce (neutrino-nucleus scattering and electron and
neutrino captures on nuclei).

+ Behavior of Nuclear Matter 1n the Proto-neutron Star (the nuclear
Equation of State).

+ Rebuilding of nuclei 1n cooling ejecta and shock heating of for
overlying layers lead to nucleosynthesis; iron-peak and intermediate
mass (S1-Ca) elements, vp & r processes.



CAPTURES ON NUCLEI

Entropy of iron core i1s low
(S/k ~1) so few free
nucleons are present. Thus
e and v capture on heavy
nuclei via f., ot , GT

transition should dominate.
(Bethe,Brown, Applegate & Lattimer 1979)

During collapse, average
mass of nuclei increases,
quenching e~ capture (at
N=40) in IPM.

Thermal unblocking and
first forbidden were
considered but rates were

too small. (Fuller 1982, Cooperstein &
Wambach 1984)
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Change 1n lepton
abundance (Y=Y,

+Y ) occurs

gradually up to
~3x10'? g cm™.

Beyond 3x10'2,
rate of electron
capture 1s
determined largely
by blocking.
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WHAT RATES ARE NEEDED?

Change 1n lepton S —
abundance (Y=Y, 2001~ A -
+Y ) occurs : :
gradually up to 1501 ]
~3x10? g cm ™. o

Beyond 3x10'2, or :
rate of electron ; -, _
capture 1S N S St s
determined largely : o
i e

density [g/cm"]
Average Nuclear ;
Mass by 10! is 100
or more with many
nuclei contributing.



WHAT RATES ARE NEEDED?
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WHAT RATES ARE NEEDED?

Change 1n lepton 45 T= 1784 GK_p= 3398411 giom® : ',:.; H :j:;;;;i;;;;;::::!r:
abundance (Y=Y, SRR
+Y ) occurs i |
gradually up to 830
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Beyond 3x10'2, g
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Average Nuclear
Mass by 10! is 100
or more with many
nuclei contributing.

Need theory for the large number of
reactions of interest and experiments
to constrain this theory.



BEYOND IPM

protons
— nuclei

Langanke, ..., Hix, ... (2003)
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THE IMPACT OF E- CAPTURE

Continued electron
capture 1n the core
reduces Y., which
changes the initial PNS
mass by 20%.
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Juodagalvis, Langanke, Hix, Martinez-Pinedo, & Sampaio
(2010) published an improved tabulation of nuclear electron
capture for use in SN models.



INELASTIC V-NUCLEUS
SCATTERING

As with electron/neutrino capture, advances in nuclear
structure physics are improving our understanding of other
neutrino-nucleus interactions.

While coherent, elastic v-nucleus scattering has long been
considered, 1nelastic v-nucleus scattering (INNS) has often

been 1ignored. The exception 1s Bruenn & Haxton (1991)
which used INNS rate calculated for *°Fe at T=0.

Juodogalvis, Langake, Martinez-Pinedo, Hix, Dean &
Sampaio (2005) calculated INNS for 40 1sotopes of Mn, Fe,
Co & N1 at finite temperature using a combination of shell
model and RPA. A tabulation of NSE-averaged rates has
been produced for use in supernova simulations.



DYNAMICAL EFFECTS OF INNS?

During collapse, INNS works like NES to equilibrate the neutrino
distribution. However there 1s little effect from this addition.
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After bounce, heating rate just above shock 1s boosted (2-3x).
However, heating of supersonically infalling matter 1s ineffective, so

dynamics are little effected.



INNS OBSERVABLE EFFECTS

The impact of INNS 1s S AT, Langanke. Martiner-Pinedo,
most pronounced at higher 2w | N Jodsgalvs & Sampio (20073
energies. i: :zﬂ i L
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short interval after bounce. PR ey P
e With I.\l::'rAT\f.\'(1()_;';:]11:1)11 INNS e Has - SurprlSIHg.ly large
: 0.106 0,110 3% effect on potential

o o o .~ terrestrial v detectors,

2C (Ngs) 0.046 0.071 35% especially those with C
ok Py o 1% and O which have high

"6 Fe 6.2 7.5 1 7%

threshold energies.

AP 103.3 124.5 17%




THE EQUATION OF STATE

The equation of state closes the system of hydrodynamic equations by
relating the pressure to the internal energy (or temperature or
entropy), density and composition.

For supernovae, it includes contributions from photons, degenerate
electrons & positrons, and nuclei or nuclear matter. In regions where
Nuclear Statistical Equilibrium can be assumed, the supernova EOS
also provides the nuclear composition.

Three commonly used SN EoS of the last 2 decades.

4 LS EoS (Lattimer-Swesty 1991)
Liquid drop model, Compressibility — 180 MeV

4+ STOS EOS (Shen, Toki, Oyamatsu & Sumiyoshi 1998)
Relativistic mean field theory, Compressibility — 281 MeV

4 Wilson EOS (Mayle & Wilson 1991, McAbee & Wilson 1994)
Empirical Relation of Baron, Cooperstein & Kahana (1985), constrained by relativistic
Brueckner-Hartree-Fock calculations of Muther, Prakash & Ainsworth (1987),

Compressibility — 200 MeV. Includes pions at high density and pasta phase.



IMPACT OF EQUATION OF STATE

Spherically
symmetric models
can be used to study
the effects of the EoS
on the initial phase of _
CC supernovae.
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COMPOSITION
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Composition of unshocked matter shows large differences.



INTERPLAY OF EOS & NUCLEAR
ELECTRON CAPTURE
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Composition provided by the EOS 1impacts relative strength of
opacities, requiring opacities to be re-examined 1n light of progress
on the EOS.



EXOTIC EOS

Aside from assemblage of neutrons and protons into ordinary nuclei or
nuclear matter, other possibilities have been considered, including

Extended nuclear forms, ”’, just above nuclear density
Kaon or Pion condensates
Quark matter or strange matter

To affect CCSN, these exotic forms must exert their influence before
the explosion is re-energized (several hundred ms after bounce).

Example: 10 o S - [—2405ms],
! - = =255.2ms

Sagert et al (2009) o ‘; ot | vng ma

constructed a quark matter ‘g 2| 2 | e

EOS (B'#=165 MeV). 2 | "-\

Transition to QM causes 2 ol

second shock that drives »

explosion. 10 10 10
Radius [km]
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NUCLEAR EOS &
NEUTRON STARS

With Neutron Stars,
astrophysical observations
inform us directly about
microscopic physics.
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NUCLEAR EOS & i
NEUTRON STARS |

With Neutron Stars,
astrophysical observations
inform us directly about
microscopic physics.

Neutron Stars 1n binary
systems allow measurement
of the NS mass.

If radius can also be
determined (by thermal
emission, redshift, accretion
rate, ...), then this data can
constrain the mass-radius
relation for the EOS.
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SUMMARY

Core-Collapse Supernovae are the inevitable result of
massive stellar evolution.

Sel

CX]

f-consistent models confirm successtul prolate

plosions across a range of progenitors from 12-25 Mg

driven by neutrino heating and SASI. These simulations
point to a successtul neutrino-reheating mechanism,
with the explosion delayed by 300 ms or more atter
bounce, at least in 2D.

Self-consistent 3D simulations, while very expensive, are
possible. They are critical to teach us the value of our 2D
simulations.

Nuclear physics the CCSN problem enters through nuclear
matter and weak nuclear reactions.



