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Syllabus:  Part I
★ Cosmology Primer
‣ evidence for an expanding universe

‣ life in an expanding universe

‣ dynamics of  an expanding universe

★ The Cosmic Microwave Background (CMB)

★ Cosmic Acceleration



Cosmology 101



Structure, Origin, Evolution of  the Universe

★today:  stars organized into galaxies

★ex: Solar Sytem is part of  Milky Way

Typical galaxy:  100 billion stars
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★today:  stars organized into galaxies

★ex: Solar Sytem is part of  Milky Way

Typical galaxy:  100 billion stars
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Andromeda galaxy 

Sombrero galaxy

                 Think big!
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Hubble Ultra Deep Field

far away = long ago
telescopes are time machines!
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Cosmic Matter Distribution
Measure cosmic structure:
map galaxies in space

you are here

On large scales:  galaxies smoothly fill universe:  
homogeneous + isotropic = “Cosmological Principle”



Cosmic Kinematics:
Hubble’s Law and its Meaning

Edwin Hubble (1929):

• measured galaxy motions, distances

• all galaxies redshifted:  move away from us

• farther        faster:  

• that is, 

• Q:  units of  H?  velocity pattern in space?
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Cosmic Kinematics:
Hubble’s Law and its Meaning

Edwin Hubble (1929):

• measured galaxy motions, distances

• all galaxies redshifted:  move away from us

• farther        faster:  

• that is, 

• Q:  units of  H? velocity pattern in space?

Interpretation:  What does it mean?
Ø Egoist                      

view:

We are at
center of  Universe

ØEinstein 
   view

Universe is 
expanding!
No center!

!v = H !r

∆λ/λemit ≡ z ∝ r



Explaining Hubble:  
Kinematic Model of  Milne (1933)Explaining Hubble: Kinematic Model of Milne (1933)

imagine an explosion at t = 0

• let galaxies all start in region of size ! cttoday
fly away with uniform distribution speeds vgal

• but we remain at r = 0 until now: ttoday = t0

after explosion, let each galaxy coast

maintaining its initial velocity

after time ∆t = t0:

• !rgal → !vgal t0 fastest → farthest!

• so !vgal → !rgal/t0 ≡ H0!rgal ∝ !rgal: recover Hubble’s law!

• solve for cosmic age

t0,Milne =
1

H0
(1)

3



Hubble Flow:  Characteristic ScalesHubble Flow: Characteristic Scales

Hubble’s law today: !v = H0!r

introduces Hubble parameter H0 = 100 h km s−1 Mpc−1

with h ≈ 0.7

Hubble time

tH ≡
1

H0
= 9.778 h−1 Gyr = 13.97 Gyr

(

0.70

h

)

where 1 Gyr = 109 years

⇒ sets ∼ scale of “expansion age” of Universe

Hubble length

dH ≡
c

H0
= ctH = 2.998 h−1 Gpc = 4.283 Gpc

(

0.70

h

)

(2)

sets ∼ size of observable Universe
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Kinematic/Egoist/Explosion Model (Milne) is 
logically possible! 

• i.e., can fit basic cosmo structure, kinematic data

But...

Q: give a philosophical reason why we don’t believe 
this? 

Q: give a physical reason why this treatment can’t 
be right? 

Q: give an observational reason why we don’t 
believe this?



Critiques of  Cosmic Egoism
We are at the center of  the universe? 

Philosophically:
• not Copernican (“principle of  mediocrity”) 

Physically:
• haven’t included gravity!

Observationally: 
• Milky Way, Local Group don’t look special 
• not what expect from center of  explosion 
• compare supernova → neutron star, black hole
• ...yet radial v pattern makes us look special...
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Explaining Hubble:
Einstein & General Relativity

Einstein (1915):  General Relativity:  
• spacetime warped by matter:  “stretches like rubber sheet”
• i.e., spacetime is dynamic

Einstein (1917):  apply GR to Universe
• homogeneous density drives cosmic motion 
• the Universe is expanding!
• seriously!  space is expanding!
• expansion drives all galaxies away from all others
• a bold, strange idea

okay, really:  in 1917, Big Al modified GR equations with 
“fudge factor” 

• “cosmological constant” Λ            “vacuum energy density”
• designed to keep Universe static 
• after Hubble’s 1929 work, Einstein allegedly said this was 

his “greatest blunder”
•  ...but wait a few minutes
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Expansion and Dynamics
What do observers see in expanding universe?

galaxies at   

in expanding universe:

all observers 
see Hubble’s Law!

t + ∆t
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ȧ

a
a !rtoday =

ȧ
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Cosmology 101:  Kinematics
expanding U:  write interparticle distances as

separate into 
space-indep universal scale factor

and time-indep “rubber sheet” comoving coord

expansion speed:

recover Hubble’s law!  with Hubble “constant” 

!r(t) = a(t) !rtoday

!v(t) = !̇r = ȧ !rtoday =
ȧ

a
a !rtoday =

ȧ

a
!r(t)

H(t) =
ȧ

a
cosmic expansion rate



Expansion and Redshifts: IRedshifts I

quick-n-dirty: wavelengths are lengths! ..it’s right there in the name!

→ expansion stretches photon λ

λ ∝ a

if emit photon at tem, then at later times

λ(t) = λemit
a(t)

a(tem)
(4)

if observe later, λobs = λem aobs/aem
measure redshift today:

z =
λobs − λem

λem
=

1− aem
aem

(5)

high z ↔ small a ↔ distant past

9
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Cosmic Blackbody Radiation: 
the Microwave Background

No seasonal variations:
• not atmospheric foreground emission

Isotropic:
• not solar system or Galactic emission
• not from nearby extragalactic regions (Virgo cluster and 

supercluster)

Ergo:  emission is cosmological!

Planck spectrum:  blackbody radiation
• present-day Universe filled with thermal radiation
• implies Universe was once in thermodynamic equilibrium
• but today:  densities low, equilibration time >> age of  U
• equilibrium requires denser, hotter early state:  Big Bang!
• in fact:  CMB is picture of  U when matter & radiation decoupled

at t~380,000 yr

• present photon temperature 
• temperature evolution:  Wien’s law                               expand       cool!
• density:  

Nobel Prize 1978

T0 = 2.725 ± 0.001 K

T ∝
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λmax

∝

1

a
εγ ≡ ργc2

= aSBT 4
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General Relativity:  for Euclidean (“flat”) geometry,

Lessons:
expansion rate of  the universe depends on the contents of  the universe
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today:                                                                       CMB dynamically unimportant                                                           

but in early U: TCMB high
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ȧ

a

)2

=
8π

3
Gρ

r

ρ = ρmatter + ρradiation + ρdark energy

ρtoday ! ρradiation ∝ T 4
CMB

ρearly univ ≈ ρradiation

ρ



Cosmic Expansion History 
Reveals Cosmic Contents

Cosmic dynamics:  expansion.  
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spoiler alert:  curvature term is zero
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• trace evolution of  cosmic contents!

How to measure expansion rate at z?
• quick and dirty:   Hubble law

• lesson:  need redshift z (trivial!) and distance r (non-trivial!)
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Measuring Cosmic Distances:
Standard Candles

Consider a standard candle
• object with known, fixed luminosity L = light power output

In non-expanding, Euclidean (uncurved) U:
• observer at distance D sees energy flux:
• and thus infers a “luminosity distance”

In the real, expanding Universe
• luminosity distance still well-defined
• determined by cosmic expansion history:

The Game:  
• identify standard candle
• measure candle flux F(z) over large range of  z
• determine cosmic expansion history H(z)

Q: requirements for a useful standard candle?  Candidate(s)?
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Standard Candles
Requirements:

• known and fixed luminosity
must understand emitter well
preferably candles identical at all cosmic time
or must understand how they evolve

• must be visible at redshifts of  interest
luminosity must be large!

Best candidates: well-calibrated, huge L
• active galaxies (quasars):  gigantic L, but high variability
• GRB:  huge L, but high variability (?)
• core-collapse SNe:  large L, but diverse appearance
• Type Ia SNe:  large L, ~uniform appearance

why?  nuclear physics!
thermonuclear explosions of  white dwarfs
all have similar composition and mass (Chandrasekhar limit)



Supernova Cosmology:  Results

Supernovae show
★cosmic expansion 

slower in the 
past!?!?

★the expansion rate 
is speeding up with 
time!

★the universe is 
accelerating!
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• problem with standard candles? 
• but note: multiple lines of  evidence for cosmic anomaly
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• with repulsive effect:  “antigravity”!
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• vacuum energy = cosmological constant!
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– good news:  Higgs discovery confirms nature contains fundamental (?) scalars
– bad news:   Higgs field cannot be the source of  acceleration 

★ acceleration            “dark energy”
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26Science Magazine “Breakthrough of  the year”



2011 Nobel Prize in Physics

"for the discovery of  the accelerating expansion of  the 
Universe through observations of  distant supernovae"

Saul Permutter Brian Schmidt Adam Riess
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Cosmic Job Security:
Precision Ignorance

‣ What is the dark matter?   
how is it produced?

how does it interact?
what was its role in the early universe?

‣ What is the dark energy?
is it related to dark matter?
does it evolve with time?
what was its role in the early universe?

‣ What sets                                       today?
compare:  nuclear physics sets

ρbaryon ∼ ρmatter ∼ ρΛ

ρH ∼ ρHe



Questions?



Expansion and Redshifts: IINewtonian Derivation of Redshift: Hubble & Doppler

slower-n-cleaner: non-relativistic Doppler
non-rel Doppler sez:

δλ

λ
≡ z =

v

c
(6)

Hubble sez:

cz = Hr (7)

Together

δλ

λ
=

Hr

c
(8)

But light travels distance r in time δt = r/c, so

δλ

λ
= Hδt =

ȧδt

a
=

δa

a
(9)

for arriving light, fractional λ change = fractional a change!

1
0



Worked Example:  A Matter-Only UniverseA Matter-Only Universe

consider a universe containing only non-relativistic matter

Friedmann:
(

ȧ

a

)2
=

8πG

3
ρ−

κc2

R2

1

a2
(21)

=
8πG

3
ρ0a

−3 −
κc2

R2
a−2 (22)

For κ = 0: “Einstein-de Sitter”

(ȧ/a)2 =
8πG

3
ρ0a

−3 (23)

evaluate today: H2
0 = 8πGρ0/3

a1/2da = H0 dt (24)

2/3 a3/2 = H0 t (25)

Q: implicit assumptions in solution?

1
5



Einstein-de Sitter:

t =
2

3
a3/2H−1

0 (26)

a =
(

3

2
H0t

)2/3
=

(

t

t0

)2/3

(27)

Now unpack the physics:
• boundary condition: a = 0 at t = 0 → “big bang”
• a ∝ t2/3 Q: interpretation?

• evaluate Hubble parameter

H =
ȧ

a
=

2

3

1

t
(28)

Q: interpretation?

• present age:

t0 =
2

3
H−1

0 =
2

3
tH (29)

Hubble time tH sets scale
Q: note that t0 < tH: why?

1
6



Other Einstein-de Sitter fun facts:

• U. half its present age at a = 2−2/3 = 0.63

• objects half present separation (and 8× more compressed)

at t = 2−3/2t0 = 0.35t0
• using measured value of H0, calculate t0 = 8.9 Gyr

but know globular clusters have ages tgc >∼ 12 Gyr Q: huh?

1
7
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Einstein--de Sitter predicts Univ. younger than objects in it!
• violates theorem:  you can’t be older than your mother!

Q:  what’s going on?

A:  Einstein--de Sitter model is not the correct description 
of  our Universe!

• EdS assumes matter only, and no curvature
• turns out:  no curvature is correct assumption
• ...but there is stuff  other than matter (and radiation!) out there!
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