Introduction to Cosmology:
Lifestyles in an Expanding Universe

.
l(.
- "
.' ) e

Brian Fields

University of lllinois
TALENT Summer School in Nuclear Astrophysics
MSU/NSCL | June 2, 2014




Syllabus: Part |

% Cosmology Primer

evidence for an expanding universe
life in an expanding universe
dynamics of an expanding universe

% The Cosmic Microwave Background (CMB)

% Cosmic Acceleration
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Cosmology

Structure, Origin, Evolution of the Universe
today: stars organized into galaxies
ex: Solar Sytem is part of Milky Way
Typical galaxy: 100 billion stars

Andromeda qgalax

Think big!

galaxies are building blocks

Hubble Ultra Deep Field

e S et Y Sombrero galaxy

far away = long ago
telescopes are time machines!
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Cosmic Matter Distribution
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Cosmic Matter Distribution

Measure cosmic structure:
map galaxies in space
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On small scales: galaxies clumpy



Cosmic Matter Distribution

Measure cosmic structure:
map galaxies in space

you are here .o~

On large scales: galaxies smoothly fill universe:
homogeneous + isotropic = “Cosmological Principle”
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Edwin Hubble (1929):
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Cosmic Kinematics:

Hubble’s Law and its Meaning

Edwin Hubble (1929):

* measured galaxy motions, distances GALAXY ,m:lm.' ARTIST'S ."‘f_\'L"EPT.’OA\'
- all galaxies redshifted: move away fromus |7, 8% 1 040
o Mk AT ? |
- farther=> faster: A\ demix = 2 o 7 NN {77 7 4
—> —_ e X e o 7 2 |
* thatis — Ju =2
Uv=Hr L E
* Q: units of H? velocity patterninspace? [ =~ " = 7
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Cosmic Kinematics:

Hubble’s Law and its Meaning

GALAXY MOTION: ARTIST'S CONCEPTION
T\ AR : C

. .'.?‘-\. !‘; : i . s § i
Edwin Hubble (1929): 8 N\ A 1P
* measured galaxy motions, distances 2 S ClEER ...~-.~_‘;
« all galaxies redshifted: move away from us ' ' vy
) s S, =

+ farther=D>faster: A\ demit = 2 x e Ty

+ thatis, g = H 7 BT RN
Q: units of H? velocity pattern in space? S /AT N Y
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Cosmic Kinematics:

Hubble’s Law and its Meaning

Edwin Hubble (1929): EARRINR
 measured galaxy motions, distances

all galaxies redshifted: move away fromus | <~ *~ ! -
farther=p> faster: A\ demix = 2 x 7 ke :

thatis, y = H 7 AR
Q: units of H? velocity pattern in space? .

Interpretation: What does it mean? __

Egoist Einstein
view: view
We are at Universe is
center of Universe expanding!

No center!




Explaining Hubble:
Kinematic Model of Milne (1933)

imagine an explosion at ¢t =0

e let galaxies all start in region of size K ctiogay
fly away with uniform distribution speeds vgy) e oo

e but we remain at » = 0 until now: tioqay = o '

after explosion, let each galaxy coast S .. .
maintaining its initial velocity S,

after time At = {p: - |\
® 7'gal — Uga| to fastest — farthest! o= Yo AR HERE:
® SO TUgg| — Tgal/to = HoTga) X Tga): recover Hubble's law!
e SOlve for cosmic age

1

to,Milne =
0



Hubble Flow: Characteristic Scales

Hubble's law today: v = Hqgr
introduces Hubble parameter Hy = 100 h km s~1 Mpc—1
with h =~ 0.7

Hubble time
1 0.70
tH:——9778hler—1397Gyr< )
Hg h
where 1 Gyr = 10° years
= sets ~ scale of “expansion age” of Universe

Hubble length

C

0.70
de—_ctH_2998h1Gpc_4283Gpc< )
Hg h

sets ~ size of observable Universe
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logically possible!

e j.e., can fit basic cosmo structure, kinematic data
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Kinematic/Egoist/Explosion Model (Milne) is
logically possible!
e j.e., can fit basic cosmo structure, kinematic data

But...

Q: give a philosophical reason why we don’t believe
this?

Q: give a physical reason why this treatment can’t
be right?

Q: give an observational reason why we don’t
believe this?



Critiques of Cosmic Egoism

We are at the center of the universe?

Philosophically:

* not Copernican (“principle of mediocrity”)

Physically:

 haven’tincluded gravity!

Observationally:
 Milky Way, Local Group don’t look special
 not what expect from center of explosion

e compare supernova — neutron star, black hole
o ...yetradial v pattern makes us look special...
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Explaining Hubble:
Einstein & General Relativity

Einstein (1915): General Relativity:
e spacetime warped by matter: “stretches like rubber sheet”
* j.e., spacetime is dynamic

Einstein (1917): apply GR to Universe
* homogeneous density drives cosmic motion
* the Universe is expanding!
e seriously! space is expanding!
e expansion drives all galaxies away from all others

* abold, strange idea *‘”f CogErTIoN
okay, really: in 1917, Big Al modified GR equations with | '_ o il 4 & .
“fudge factor” w R

“cosmological constant” A <> “vacuum energy density” L5 .. %
designed to keep Universe static

after Hubble’s 1929 work, Einstein allegedly said this was
his “greatest blunder”

...but wait a few minutes s YOU ARE HERD



Expansion and Dynamics
What do observers see in expanding universe?
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Expansion and Dynamics 4
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Expansion and Dynamics 4

.What do observers see in expanding universe?

. .. .. galaxiesat t + At ] .o 3
.::°.o : :’..: :.0..‘. o”.:. o. . ..’..’.. .~.°.:.° . °. p
' “. " inexpanding universe: . "*
... "+ allobservers .. %

“u tusee Hubble s Law!’, cw!
: K , RENCALIIE
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Cosmology 101: Kinematics

expanding U: write interparticle distances as

(@) (@)
7(t) = (a(t) Fioday]
separate into \
space-indep universal(scale factor)

and time-indep “rubber sheet” comoving coord

expansion speed: g
U(t) — " —= Q T'today — — @ Ttoday —

: 40

Q| &



Cosmology 101: Kinematics

expanding U: write interparticle distances as

(@) (@)
7(t) = (a(t) Fioday]
separate into \
space-indep universal(scale factor)

and time-indep “rubber sheet” comoving coord

expansion speed: g

— — . — — C.l’ —
’U(t) —Tr=a Ttoday — a a Ttoday — E T(t)
recover Hubble’s law! with Hubble “constant”
a
H(t) — —  cosmic expansion rate

a



Expansion and Redshifts: |

quick-n-dirty: wavelengths are lengths! .it's right there in the name!
— expansion stretches photon A\

A X a

if emit photon at tem, then at later times

a(t)
a(tem)
if observe later, Agps = Aem agps/aem
measure redshift today:

A(t) = Aemit

Jo— Aobs—Aem_l—G/em

>\em aem

high z <+ small a <> distant past
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Tuning in to Cosmic Noise
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* object with known, fixed luminosity L = light power output

In non-expanding, Euclidean (uncurved) U: 7
* observer at distance D sees energy flux: J' — 5
* and thus infers a “luminosity distance” 4D
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* luminosity distance still well-defined
 determined by cosmic expansion history:

Du(e) = (1+2) [ 5

The Game:
* jidentify standard candle
 measure candle flux F(z) over large range of z
* determine cosmic expansion history H(z)

Q: requirements for a useful standard candle? Candidate(s)?
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Standard Candles

Requirements:

 known and fixed luminosity
must understand emitter well
preferably candles identical at all cosmic time
or must understand how they evolve

 must be visible at redshifts of interest
luminosity must be large!

Best candidates: well-calibrated, huge L
e active galaxies (quasars): gigantic L, but high variability
e GRB: huge L, but high variability (?)
e core-collapse SNe: large L, but diverse appearance

 Type la SNe: large L, ~uniform appearance
why? nuclear physics!
thermonuclear explosions of white dwarfs
all have similar composition and mass (Chandrasekhar limit)
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but observe acceleration!

Possible explanations?

problem with standard candles?

* but note: multiple lines of evidence for cosmic anomaly
gravity = Einstein General Relativity wrong, or
most of Universe not ordinary matter!

* with repulsive effect: “antigravity”!
— for experts: need negative pressure P<0

e even dark matter doesn’t do this! Q: what does?
* vacuum energy = cosmological constant!

e only other known repulsive substance: scalar fields

— good news: Higgs discovery confirms nature contains fundamental (?) scalars
— bad news: Higgs field cannot be the source of acceleration

acceleration — >“dark energy”
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Who ordered that?

74% Dark Energy
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Cosmic Job Security:

Precision Ignorance
What is the dark matter?

how is it produced?
how does it interact?
what was its role in the early universe?

What is the dark energy?

is it related to dark matter?
does it evolve with time?
what was its role in the early universe?

What SetS pbaryon ~/ pmatter ~/ ,OA tOday?
compare: nuclear physics sets pg ~ pPHe






Expansion and Redshifts: Il

slower-n-cleaner: non-relativistic Doppler
non-rel Doppler sez:

o v
—_— = Z = —
A C
Hubble sez:
cz = Hr
Together
O __Hr
A c

But light travels distance r in time 6t =r/c, SO

10t
A _ gy 85t _ B0

a a
for arriving light, fractional A change = fractional a change!



Worked Example: A Matter-Only Universe

consider a universe containing only non-relativistic matter
Friedmann:

a 3 R2 g2
8rG 3 K2 5
= TR

For k = 0: “Einstein-de Sitter”
87TG 3

(a/a)? = TPOQ_

evaluate today: HZ = 8wGpp/3

al/?da Hp dt
2/3 a3/? = Hyt

Q: implicit assumptions in solution?



Einstein-de Sitter:
2

o = (Crot)™” = (é) o

Now unpack the physics:

e boundary condition: a=0 at¢t=0 — “big bang
o a x t2/3 Q: interpretation?

e cvaluate Hubble parameter

g_o_21
a 3t
Q. interpretation?
e present age:
=2 H-1=2,
0 —g 0o — g H

Hubble time ty sets scale
Q. note that tg < ty: why?



Other Einstein-de Sitter fun facts:

e U. half its present age at a = 272/3 = 0.63

e objects half present separation (and 8x more compressed)
at t = 273/2¢y = 0.35¢

e USiNg measured value of Hg, calculate tg = 8.9 Gyr
but know globular clusters have ages tgc & 12 Gyr Q: huh?
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Other Einstein-de Sitter fun facts:

e U. half its present age at a = 272/3 = 0.63

e objects half present separation (and 8x more compressed)
at t = 273/2¢y = 0.35¢

e USiNg measured value of Hg, calculate tg = 8.9 Gyr
but know globular clusters have ages tgc & 12 Gyr Q: huh?

Einstein--de Sitter predicts Univ. younger than objects in it!
e violates theorem: you can’t be older than your mother!

Q: what’s going on?

A: Einstein--de Sitter model is not the correct description
of our Universe!

 EdS assumes matter only, and no curvature

* turns out: no curvature is correct assumption

e ...but there is stuff other than matter (and radiation!) out there!



