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the Sun and all stars: 
‣ constantly emit energy, and 
‣ have finite mass = finite fuel supply 

Thus?
‣ all stars – including the Sun – must eventually “burn out”
‣ = run out of  energy = run out of  fuel: 
‣ the Sun all stars are doomed to die

the Sun cannot live forever!
But the Sun and other stars are alive today, so...?
‣ stars alive today were not alive forever 
‣ all stars must be born as well as die
‣ the Sun and stars have life cycles
‣ stellar mortality also implies possibility of  rebirth!
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Astronomical Numbers

★Astronomical Unit:  
Earth-Sun distance

★Parsec:

nearest star:  
➡1 pc ~ typical star-star separation

Milky Way Galaxy:  RMW~15 kpc
you are here:  Rsun~8 kpc

3

1AU = 1.5 × 1013 cm ≈ 500 light-seconds

1 pc =
1AU

(1arcsec)radian

= 3.16 × 1018cm ≈ 3light-years

1 AU

~15 kpc

d(αCen) = 1.3 pc = 4 lyr



An Introduction to Stars

★ Star formation and gravitational instability

★ Solar Structure

★ Hydrogen burning in the Sun

★ The Evidence:  Solar Neutrinos



Star Formation



Star Formation
stars born in cold gas & dust 
clumps: molecular clouds
Initial protostellar material a 
small parcel of  larger cloud 

– • cold gas & dust 
– • spinning: net angular momentum 

Q: why is L>0 a reasonable 
assumption?

For simplicity: imagine first a cold 
cloud with zero spin i.e., zero 
angular momentum

Q: forces on particles in cloud? 
Q: response of  particles to these 
forces?
Q: why is coldness important for 
this to work?



Gravitational Instability

ignoring spin: particles in cold 
cloud feel forces of  
– gravity 
– thermal pressure

but if  cloud is cold: T low, 
pressure                         small → 
only important force is gravity

gravity → inward motion → denser 
→ stronger gravity → runaway! 

“gravitational collapse”

Q: why doesn’t collapse 
continue until all matter → 
point?
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Nebular Collapse: Birth of  Sun and Disk

indeed, most matter compressed → 
central “proto-Sun”

but real pre-stellar clouds are clumpy 
parts of  larger nebulae 

– turbulent motions 
– clumps have random but nonzero spins: L>0

spin → axial but not spherical symmetry 
→ collapse not spherical 

angular momentum “centrifugal barrier”
– collapse easier along z than along R
– protoplanetary disk



Solar Stability and Structure



The Sun:  Stability

The Sun’s size is constant. 
Not expanding or collapsing 
at least on human timescales 

Q: What does this mean for 
every shell of  gas in Sun?

net force:  F = 0
– but Sun has mass and gravity

– so must be restoring force: pressure

– exactly balances gravity
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The Sun:  Stability

The Sun’s size is constant. 
Not expanding or collapsing 
at least on human timescales 

Q: What does this mean for 
every shell of  gas in Sun?

net force:  F = 0
– but Sun has mass and gravity

– so must be restoring force: pressure

– exactly balances gravity

inward force:
gravity

outward force:
pressure



Hydrostatic Equilibrium

Consider a shell of  gas in Sun, 
with with dr, volume 
– net weight:
– pressure difference:

– net pressure force:

force balance:

Q:  equation of  state?

Solar Model Ingredients (ASTR 404, 504)

1. Hydrostatic equilibrium: pressure–gravity balance

consider spherical shell of width dr,

vol dV = 4πr2dr

net weight: mg = ρdV Gm(r)/r2 = 4πGm(r)ρdr

pressure diff: Pnet = −P(r + dr) + P(r) = −dP/dr dr

⇒ force: Fp = PnetA = −4πr2Pnet (up)

balance:

−
dP

dr
=

Gm(r)ρ

r2
(1)

using dm(r)/dr = 4πr2ρ(r) (Lagrangian “mass coordinate”)

−
dP

dm
=

Gmdm/dr

4πr4
(2)

Equation of State: p = ρkT/m + aT4/3
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Energy Transport

at solar core:   energy 
transport is via photon 
diffusion

photon energy density is
radial flux is Fr = εc/3

ε = aT
4

2. Energy conservation and transport:

Center: radiation

Envelope: convection (recall 7Li depletion)

energy loss is via photons & is diffusive.

energy flux is

F = 〈cprvrn〉 =
ca

3
T4 (3)

(where ρradc2 = aT4 )

net flux at r: Fnet = F(r + δr) − F(r) $ dF/dr δr

diffusion: “stepsize” δr is mfp λ = 1/nσ ≡ 1/ρκ

opacity κ = σn/ρ = σ/m

local luminosity: & = 4πr2Fnet

&

4πr2
=

1

ρκ

dF

dr
=

4acT3

3ρκ

dT

dr
(4)

4



Energy Generation by Nuke Reactions
3. Energy generation via nuke reactions

put ρε = nuke energy production rate per unit vol

d# = ρεdV = ρε4πr2 dr (5)
d#

dr
= 4πr2ρε (6)

if q = 〈σabv〉nanb

= nuke reaction rate per vol for a + b→c + d

ρε = Qq, where energy release Q = ∆a + ∆b − ∆c − ∆d

Now have differential equations

but still need one more thing to solve them

What’s that?

5



Boundary Conditions
4. Boundary conditions:

t! = 4.6 Gyr

Mtot = M! = 2.0 × 1033 g

R = R(t!) = R! = 7.0 × 1010 cm

L = L! = 3.8 × 1033 erg/s

With these, solve m(r), !(m), T(m) (vs time)

for nuke rxns, we will need central ρc, Tc

6



Back of  the Envelope

Order of  magnitude estimation

Consider 1-zone Sun:  
‣rho?  T?
‣dP/dr?  P?
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Back of the Envelope

Order of magnitude:

dP

dR
∼

Pc

R
(7)

∼
GMρ

R2
(8)

ideal gas: P = ρkT/m

Tc ∼
(mp/2)Pc

ρk
=

GMmp

2kR
∼ 107 K (9)

Why mp/2?

now compare to professional result...
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Standard Solar Model (SSM)

Bahcall & Pinsonneault (2000,2004)

conditions at solar center:

Tc = 1.57 × 107 K (10)

ρc = 152 g cm−3 (11)

Xc =

(

ρH

ρB

)

c
= 0.34 (12)

Yc =

(

ρHe

ρB

)

c
= 0.64 (13)

Sun: main sequence, 4p→4He + 2e+ + 2νe

Q: reaction steps?8



Hydrogen Burning
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Sun: main sequence, 4p→4He + 2e+ + 2νe

Reaction chains usually begin with

p + p→d + e+ + νe (14)

weak rxn: slow; then

d + p→3He + γ (15)

Then: 3 branches

PP-I
3He + 3He→4He + p + p 3He + 4He→7Be + γ

PP-II PP-III
7Be + e→7Li + νe

7Be + p→8B + γ
7Li + p→4He + 4He 8B→8Be + e+ + νe

8Be→4He + 4He
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The PP-II and PP-III Chains

Q: what sets relative importance of  PP-II vs III?

Astro 596/496 NPA
Lecture 26

Oct. 23, 2009

Announcements:
• Problem Set 4 due
• Preflight 5 posted, due noon next Friday

Last time: The Nuclear Sun

p + p → d + e+ + νe

d + p → 3He + γ

Then: 3 branches
PP-I

3He + 3He→4He + p + p 3He + 4He→7Be + γ
PP-II PP-III

7Be + e→7Li + νe
7Be + p→8B + γ

7Li + p→4He + 4He 8B→8Be + e+ + νe
8Be→4He + 4He
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The pp-II, pp-III Chains

Other main pp chains: different 3He fate
7Be branching key:

e capture rate ∼ 1000× p capture rate

• 7Be: 15% of ν production

• 8B ∼ 0.02% of ν production

The CNO Cycle

pre-existing C, N, O act as 4p→4He catalyst
12C

(p,γ)
→

13N e+νe
→

13C
(p, α) ↑ ↓ (p, γ)

15N e+νe
←

15O (p,γ)
←

14N

Coulomb barriers high (Z = 6,7,8): need high Tc to go

⇒ CNO cycle minor in Sun (CNO →1.6% L()

but main H-burner for M >∼ 1.5M(

1
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The Evidence:
Solar Neutrinos



Solar Neutrino ProductionStandard Solar Neutrino Production
Total SSM Flux

Rxn Eν,max = Q 〈Eν〉 Φν (1010 ν cm−2 s−1)
pp→deν 0.420 MeV 0.265 MeV 6.0

7Be e→7Li ν lines: 7Li
gs

= 0.861 MeV; 7Li
∗
= 0.383 MeV 0.47

8B→8Be e ν 17.98 MeV 9.63 MeV 5.8 × 10−4

Q: Why are the 7Be neutrinos monoenergetic?

www: Bahcall neutrino spectrum

pp neutrinos largest flux, but low energies

7Be neutrinos monoenergetic, strong ∼ T8
c dependence

8B neutrinos continuum, ultrastrong ∼ T20
c dep

What should this mean for production vs radius?

www: Bahcall fig of production vs R
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