³¹Cl *ε*p decay:XUNDL-6 2025Bu00

Parent: ³¹Cl: E=0; $J^{\pi}=3/2^+$; $T_{1/2}=190$ ms *1*; Q(ε p)=5877 *3*; % ε p decay=2.08 5

³¹Cl-J^{π}: From Adopted Levels of ³¹Cl in ENSDF database.

³¹Cl-T_{1/2},Q(ε p): from 2021Wa16.

³¹Cl-% ε p decay: % ε p=2.08 5 for ³¹Cl decay, revised from % ε p=2.4 2 (2011SaZM).

Compiled (unevaluated) dataset from 2025Bu00: Phys Rev C xxx, xx43xx (2025).

Compiled by L. J. Sun (FRIB, MSU), February 5, 2025.

2025Bu00: ³¹Cl ions were produced by fragmentation of a 150 MeV/nucleon ³⁶Ar beam on a 1645 mg/cm² Be production target, separated and purified by the A1900 fragment separator and the Radio Frequency Fragment Separator (RFFS), and transported into the Gaseous Detector with Germanium Tagging (GADGET) system consisting a custom-built gas-filled proportional counter called Proton Detector (PD) surrounded by the SeGA array of 16 HPGe crystals. Measured center-of-mass energies and relative intensities of β -delayed protons, and p γ -coincidences. Normalized I_p relative to the I_p of the 1026-keV (c.m.) proton of 2011SaZM. Deduced excitation energies and I_{β} of proton-emitting states in ³¹S.

³⁰P Levels

E(level) [†]	J^{π}
0	1+
677.11 10	0^{+}
708.70 7	1^{+}
1454.28 5	2^{+}
1973.34 8	3+

[†] From ³⁰P Adopted Levels in ENSDF database.

Delayed Protons (³⁰P)

E(p) [†]	E(³⁰ P)	I(p) [@]	$E(^{31}S)^{\#}$	Comments
258 4	0	0.069 5	6388	E_p revised from $E_p=273$ keV 10 (2022Bu14). $I_{\beta p}=9.0(10)\times10^{-6}$ revised from $I_{\beta p}=8.3\times10^{-6}$ +12-9 (2022Bu14).
805 [‡] 2	0	15.4 +7-8	6936	
833 [‡] <i>3</i>	1454.28	0.10 1	8418	
870 18	708.70	< 0.05	7703	
906 [‡] 2	0	6.6 4	7037	
958 12	708.70	< 0.05	7797	
973 2	1454.28	0.33 5	8557	
1026.9 [‡] 11	0	100 +9-8	7157.5	
1065 8	708.70	0.20 5	7905	
1137 4	1973.34	0.38 +10-9	9238	
1217 2	677.11	0.26 5	8024	
1223 5	1973.34	0.31 6	9328	
1228 2	1454.28	1.4 + 3 - 2	8813	
1317 8	1973.34	0.6 3	9421	
1379 2	1454.28	0.7 2	8964	
1572 <i>3</i>	0	10.8 20	7703	
1579 [‡] 3	708.70	1.0 2	8418	
1610 [‡] 3	677.11	2.2 + 5 - 4	8418	
1651 <i>3</i>	1454.28	0.8 2	9238	
1715 4	708.70	0.8 2	8557	
1756 <i>3</i>	0	2.9 + 6 - 5	7887	
1819 6	1454.28	0.25 + 7 - 6	9404	
1862 8	677.11	< 0.14	8669	
1869 7	708.70	0.22 + 6 - 5	8709	
1887 3	0	6.9 + 13 - 11	8017	

Continued on next page (footnotes at end of table)

³¹Cl *ɛ*p decay:XUNDL-6 2025Bu00 (continued)

Delayed Protons (continued)

E(p) [†]	E(³⁰ P)	I(p) [@]	$E(^{31}S)^{#}$
2143 5	677.11	0.7 6	8950
2145 4	0	<0.6	8275
2287 [‡] 3	0	4.0 +8-6	8418
2489 8	708.70	1.0 3	9328

[†] Center-of-mass energy.

^{*} Used for proton energy calibration.
[#] From E(c.m.)+S(p)(³¹S)+E(level)(³⁰P), where S(p)=6130.65 24 (2021Wa16). Weighted average is taken where there are more than one proton decay branches from a level in ³¹S.
[@] For absolute intensity per 100 decays, multiply by 0.0131 2.

³¹Cl εp decay:XUNDL-6 2025Bu00

Decay Scheme

I(p) Intensities: I(p) per 100 parent decays

					$3/2^+$ 0 190 ms J
					$\% \varepsilon_{p}=2.08$ $Q_{\varepsilon_{p}}=5877 3$
ſ					[*] ³¹ ₁₇ Cl ₁₄
	E(p)	I(p)	$E(^{31}_{16}S)$	$E(^{30}_{15}P)$	1
	258	0.00090	6388	0	
	805	0.201	6936	0	9328
	906	0.087	7037	0	
	1026.9	1.32	7157.5	0	
	1572	0.142	7703	0	/
	1756	0.038	7887	0	
	1887	0.090	8017	0	8950
	2145	<0.00/9	8275	0	
	2287	0.052	8418	0	/,
	1217	0.0034	8024	677.11	8709
	1610	0.029	8418	677.11	8669
	1862	< 0.0018	8669	677.11	8557
	2143	0.009	8950	6//.11	
	870	<6.6×10) - 1/03	708.70	8418
	958	<6.6×10)-4 7/97	708.70	
	1065	0.0026	7905	708.70	8275
	1579	0.0131	8418	708.70	
	1/15	0.0105	8337	708.70	/,
	2480	0.0029	0228	708.70	8024
	2469	0.015	9526	1454.28	8017
	072	0.00131	0410 8557	1454.28	
L	913	0.0043	8337	1434.20	
					7703
					,
_2	+			1454.28	*
					/
					7157.5
					6936
	L			7 00 7 0 /	
	+ _			/08.70 ¥	
				0/7.11	
					/
					6388
					/
1-	+			0	/
_				0	31 s
		,	20-		16.315
			$^{15}_{15}P_{15}$		

³¹Cl εp decay:XUNDL-6 2025Bu00

Decay Scheme (continued)

I(p) Intensities: I(p) per 100 parent decays

1454.28 2+

 ${}^{30}_{15}P_{15}$