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Abstract
There are several assumptions made in a standard χ2 analysis of data, including
the frequent assumption that the likelihood function is well approximated by a
multivariate Gaussian distribution. This article briefly reviews the standard
approach and describes how Bayesian inference can be used to go beyond the
assumption that the likelihood is Gaussian. Two separate types of analysis
relevant to nuclear physics are used as test cases. The first is the determination
of the equation of state of dense matter from neutron star mass and radius data.
The second is the use of theoretical nuclear mass models to fit currently
available data and predict the value of masses which have not yet been
measured. For the problem of predicting nuclear masses, it is demonstrated
that approximating the likelihood function with a Gaussian can produce biased
predictions of unmeasured masses. Finally, the lessons learned from these
fitting problems are used to propose a method for improving constraints on the
nuclear symmetry energy.

Keywords: energy density functionals, neutron skin thickness, covariance
analysis, equation of state of dense matter, neutron star radii

(Some figures may appear in colour only in the online journal)

1. Introduction

Interpreting data and understanding the accompanying theoretical models often requires a
statistical analysis. Frequently, this analysis takes the form of an minimization of a function,
χ2, which quantifies the extent to which a model can reproduce a set of experimental data.
Uncertainties and correlations are determined by exploring the properties of the likelihood
function near the best-fit parameter set. This process contains several assumptions, one of
which is that the likelihood function is nearly Gaussian.
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Neutron stars, to a good approximation, all lie on one, universal, mass–radius (M–R)
curve. It is of broad interest to determine this universal relation, in part because of the
connection to the cold and dense region of the QCD phase diagram [1]. Statistical analyses
were not applied to neutron stars until recently [2, 3], in part because of the paucity of mass
and radius data. The data is sufficiently sparse that the dense matter equation of state is
currently underconstrained. This has motivated the use of Bayesian inference which provides
a clearer path forward for underconstrained systems. Systematic uncertainties also play a
dominant role, and Bayesian inference is useful for characterizing these uncertainties [4].

The statistical analysis of nuclear mass data, on the other hand, was performed already in
the 1920s, just before the discovery of the neutron and the creation of the Bethe–Weisacker
mass formula [5]. Historically, works have typically chosen to minimize the root-mean-square
deviation either of the mass excess, the binding energy, or the energy per baryon (see the
discussion in [6]) with respect to parameters in a Hamiltonian (e.g. the Skyrme model [7] or a
covariant mean field model [8]), or a phenomenological nuclear mass formula [9–12]. More
recent works have considered other data in the fits, such as charge radii (e.g. [8]) and dipole
polarizabilities [13].

In section 2 the basic problem of fitting nuclear data is introduced, along with a dis-
cussion of how Bayesian inference can play a role. Section 3 describes the analysis of neutron
star data, and shows how the Gaussian approximation fails to accurately describe correlations
and biases predictions of the radius of a 1.4 ⊙M neutron star. Section 4 describes predictions
of unmeasured nuclear masses and the nuclear symmetry energy, and section 5 highlights the
importance of selecting the proper data set.

2. Chi-squared, nuclear masses, and charge radii

The prototypical problem to be discussed is the fitting of a model, i.e. an energy density
functional, to nuclear masses and charge radii. A review the basic formalism highlights the
various assumptions which are often made. Using a set of Nd data points, Di, and a model
with Np parameters, pj, one defines a function, χ2, by
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where Pi is the model prediction for data point with index i and σ iexp, is the experimental
uncertainty of the ith data point. Minimizing χ2 over the Np dimensional parameter space
gives the best fit to the data. Alternatively, one maximizes a likelihood function

χ= − ( )exp 2 , (2)2

which is equal to a product of Gaussians for each data point. The formulation into a likelihood
function makes it clear that an implicit assumption of an independent and Gaussian
distribution for each data point has already been made1. If this assumption is correct and the
deviations of the data from the model predictions follow a Gaussian distribution, then the

1 The assumption of independence is violated in nuclear mass data; the construction of the atomic mass evaluation is
done in such a way that neighboring nuclear masses are non-trivially correlated [14, 15]. Future atomic mass
evaluations will attempt to assess these correlations [16]. In any case, these correlations may not be important here
because the experimental uncertainties are much smaller than the systematic uncertainties. For examples of fitting
correlated data in hadron mass spectroscopy, see [17].
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value of χ2 follows the chi-squared distribution and a ‘good fit’ is one where χ ≈ −N Nd p
2 .

Note that, in an underconstrained system, − <N N 0d p and this test is not useful.
If the model is a linear function of the parameters, then the model serves as a linear

transformation of the multivariate Gaussian determined by the data and therefore the like-
lihood function is also Gaussian. For nonlinear models, the likelihood function is approxi-
mately Gaussian in the limit → ∞Nd because of the central limit theorem. If the likelihood
function is approximately Gaussian, then it can be parameterized by a best fit vector μ and a
covariance matrix, Σ

μ Σ μ≈ − − −− ⎡
⎣⎢

⎤
⎦⎥Ap p p( ) exp

1

2
( ) ( ) , (3)T 1

with a normalization factor A fixed so that equation (2) holds2. The covariance matrix is often
determined by computing the second derivative of  around the maximum. In terms of the
original χ2 function
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The correlation matrix  can be obtained from Σ by Σ Σ Σ=ij ij ii jj . Modern fitting codes
often obtain the covariance matrix from the Jacobian of χ2. The correlation matrix, obtained in
this way, is a correct representation of the correlations between model parameters only if the
likelihood function is approximately given by the form in equation (3). It has become
commonplace to report correlation matrices without verifying that this approximation is
actually valid. The implications of this approximation for predicting nuclear masses is
discussed in section 4 below.

Alternatively, the covariance matrix can also be obtained directly from a Markov chain
Monte Carlo simulation of the likelihood function. Each entry is just the correlation coeffi-
cient

∑Σ = − −
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p p p p
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where p̄i is the average value of the ith parameter and Nc is the number of entries in the
Markov chain. This latter method is useful even when the likelihood function is not
approximately Gaussian.

In the context of nuclear masses, there is evidence that the likelihood functions implied
by typical models are often not Gaussian. Explicit calculation shows that the likelihood
function from the simple Bethe–Weisacker mass formula is multi-modal because of the
pairing contribution. Skyrme models [7], energy density functionals which describe nuclear
masses and charge radii, are linear in parameters …t t, ,0 3, but not linear in the parameter, α,
which characterizes density-dependent two-nucleon force. This nonlinearity could mean that
likelihood is not fully Gaussian, though this has not been fully studied. Some evidence for
non-Gaussian behavior is present in the posterior probability distributions for the Skyrme-like
parameters in figure 1 of [18] which are fit to a large set of data comprising mostly of nuclear
masses and charge radii. Covariant mean-field models may also not generate Gaussian
likelihoods because of the nonlinearity (which is required to reproduce saturation) in the
mean-field equation for the scalar–isoscalar meson (e.g. [19]).

2 Note that the likelihood function is not renormalized so that its integral is unity. The likelihood function, unlike the
prior and posterior distributions below, is not a probability density function. The normalization is important when
comparing how two models fit to the data. See also the discussion of Bayes factors below.
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If the likelihood function was a multivariate Gaussian, one would expect the mini-
mization of χ2 to be numerically trivial (so long as the likelihood was evaluated with sufficient
numerical accuracy). For example, the Broyden–Fletcher–Goldfarb–Shanno method is
guaranteed to converge if the objective function has a quadratic expansion near the extremum.
The result that the fit of the Skyrme-like parameter ρC J

1 depends slightly on the initial guess
in [20] (in a fit similar to that in [18] described earlier) means that, in contrast, this mini-
mization is not trivial. This is not surprising as the posterior distribution of this same para-
meter in figure 1 in [18] appears multi-modal.

All currently available energy density functionals which describe heavier nuclei have
systematic uncertainties which are much larger than the σ iexp, . Thus, it is common to redefine
χ2 as

∑χ
σ σ

=
−
+

( )D P
, (6)
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2
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d

where σ isys, is the systematic uncertainty for each data point. Often σ iexp, is small enough that
it can be ignored. There are now +N Np d parameters: the Np model parameters and a

parameter σ isys, for each data point. Equivalently, one can replace each σ isys,
2 with a weight,

wi, to be fixed by some recipe. There are several ways to proceed. It is possible to perform a
Bayesian analysis with all +N Np d parameters, but this is computationally difficult3. The
alternative is to reduce the number of parameters. A frequent choice is to employ a fixed
uncertainty for each type of data point, e.g. σmass for nuclear masses and σradius for charge
radii. A similar choice is manifest in the literature through the presence of fitting protocols: to
choose not to fit data point j is equivalent to assuming that the systematic uncertainty for the
model to predict the jth data point, σj, is so large that the corresponding term in χ2 is
negligable. Early fits (see review in e.g. [5]) used only doubly-magic nuclei, on the basis that
open-shell systems contained correlations which were unlikely to be correctly computed by
Hartree–Fock calculations. [21] discusses this issue and suggests fixing the denominators by
separately normalizing χ2 for each type of data (their equation (4)). A slightly different
procedure is suggested below. Finally, computing several systematic uncertainties using
iteratively-reweighted least squares may be useful. Studies of how relative variations in the χ2

weights might affect the interpretation of the data, in the context of low-energy nuclear data,
are in their infancy.

An implicit assumption in this discussion is the assumption that the systematic uncer-
tainties in the denominators are themselves uncorrelated. If this assumption fails, then one
must reformulate the χ2 function to take into account the uncertainties. This problem has been
found particularly relevant for fitting parton distribution functions (see in particular appendix
B of [22]). If correlations among parametersand correlations among the systematic uncer-
tainties are not important, and if the χ2 function is of the form given above, one can estimate
parameter uncertainties by varying the parameters, one at a time, until χ = − +N Np( ) 1d p

2 .
However, it seems likely that the systematic uncertainties of masses and radii are indeed
correlated. Models with no three-nucleon forces often predict saturation at a higher density
and with a larger binding energy than found in laboratory nuclei [23], and these models
naturally lead both to smaller masses and smaller radii.

3 I have found empirically that a Bayesian analysis in this form requires prior distributions for σ isys, that fall off as

σ−exp ( )2 to to ensure the trivial solution with σ → ∞ does not dominate the results. More work in this direction is in
progress.
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In the context of fits to nuclear masses and charge radii, the model parameters are almost
always correlated. If the likelihood function is nearly Gaussian, then one can determine the
parameter uncertainty including these correlations by marginalizing over the multivariate
Gaussian (which can be done using the covariance matrix and does not require any
integration).

3. Bayesian analysis for meutron star masses and radii

For neutron stars, the problem is how to determine the M–R curve from a small sample of
poorly constraining observations. (A review is available in [24], only some of which is
particularly relevant to this work and reproduced here.) The statistical analysis is complicated
for two reasons. The first is that the currently available data has large statistical (and large
systematic) uncertainties. There are effectively more parameters than constraints. Second, the
M–R curve need not be a function in the mathematical sense, it may fail either or both of the
horizontal or vertical line tests. (Given the central energy density, εc, the relations εM ( )c and

εR ( )c are both well-defined functions.) An example of how this happens in is [25], where a
phase transition induces a new branch in the M–R curve.

Bayesian analysis allows one to solve both of these issues, at the expense of introducing
an unknown function, a prior probability distribution function. Also, the two-dimensional
nature of the neutron star problem requires that Nd parameters for the neutron star masses, Mi,
are also added. Some researchers have been slow to employ Bayesian inference because of
the ambiguity in determining prior distributions, but [26] has shown that the prior is not a
separate entity but a part of the model which can be checked and verified by comparing
to data.

In the case of nuclear mass fitting described above, the likelihood function is a product of
Nd Gaussian probability distributions for each data point. The neutron star case is handled
similarly (cf equation 31 in [3]): the likelihood function is a product over a data set for each
neutron star. Each data set is of the form  M R( , ), a two-dimensional probability distribution
for the mass and radius of a neutron star. These probability distributions have complicated
shapes, and the likelihood is not Gaussian. As discussed above, the traditional correlation
matrix thus does not contain all of the information on correlations present in the problem.

As a demonstration, the correlation matrix is represented in figure 1, for the analysis of
neutron star data with the HLPS + model C parameterization from [27] based on [28] and
model C from [29]. There are 17 model parameters, 7 from the EOS and 10 neutron star
masses. The seven EOS parameters are given in table 1. The results below do not depend
sensitively on the values of the saturation density or the energy density grid which is used, so
long as the grid covers the full range of energy densities probed in neutron star cores. The four
panels each represent the correlation matrices inferred from different subsets of the Markov
chain Monte Carlo simulation of the likelihood function. The upper-left panel was computing
using only points where the likelihood was within a factor of two of the maximum value at the
best fit (this is the result which corresponds to the Gaussian approximation as discussed in
section 2). The upper-right panel used points where the likelihood panel was a factor of 8
within the maximum. The lower-right panel used all the Monte Carlo points and thus does not
impose any approximation on the likelihood function. The strong correlation between para-
meters 2 and 3 is related to the correlation between S and L as obtained in [28]. The strong
anti-correlation between pressure parameters is also expected. The pressure cannot be too
small over a large range in density or the maximum mass will like below the observed value.
The pressure cannot also be too large over a large range in density or the radii will be too
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large to reproduce the data. Qualitatively, the pressure tends to be either small at moderate
densities and large at high densities, or vice-versa. Finally, it is clear that many of the
correlations in the Gaussian approximation (upper-left panel) are not representative of the full
data set (lower-right panel).

Figure 1. The evolution of the correlation matrix as more Monte Carlo points near the
maximum likelihood (best fit) are added. The x and y-axes both enumerate the
parameter number as given in table 1. The upper-left shows the correlation matrix in a
close neighborhood around the best fit. This is the result as obtained assuming the
likelihood is described by a covariance matrix from equation (4). The lower-right panel
shows the full covariance with all the Monte Carlo samples (using equation (5)). The
upper-right and lower-left panels show the evolution between these two. Strong
correlations are in purple, yellow, strong anti-correlations are in orange, and lack of
correlation is white. The true correlations in the fit are represented by the lower-right
panel even though the upper-left panel is representative of the method most often used
to compute these correlations.
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This result is further demonstrated in the left panel of figure 2, where the correlation
coefficient between the high density pressure parameter, P4 and the mass of the neutron star in
the M13 globular cluster is shown as a function of the range of likelihoods considered,
 min max . The two parameters appear anti-correlated near the best fit. In reality, they are not
correlated. This lack of correlation is expected, as the neutron star in M13 is typically lower in
mass, and thus less sensitive to the pressure at higher densities. The right panel of figure 2
shows that the Gaussian approximation to the likelihood also gives a different range for the
radius of a 1.4 ⊙M neutron star implying slightly larger radii.

In Bayesian inference, marginalization is often used to determine model parameters. The
posterior probability distribution for the ith parameter is determined from

Table 1. The list of parameters for neutron star EOS parameterization described in the
text and corresponding to the correlation matrices displayed in figure 1.

Parameter index Description

1 Compressibility
2 Energy per baryon of neutron matter
3 Derivative of energy per baryon of neutron matter
4 ε≡ = − =− −P P P n( 2 fm ) ( 0.16 fm )B1

4 3

5 ε ε≡ = − =− −P P P( 3 fm ) ( 2 fm )2
4 4

6 ε ε≡ = − =− −P P P( 5 fm ) ( 3 fm )3
4 4

7 ε ε≡ = − =− −P P P( 7 fm ) ( 5 fm )4
4 4

8–17 Individual neutron star masses

Figure 2. Left panel: the evolution of one correlation coefficient away from the best fit.
The pressure at high densities and the mass of one neutron star appear correlated (on
the right side of the plot), but in reality are uncorrelated (on the left side of the plot).
Right panel: the posterior probability distributions for the radius of a 1.4 ⊙M neutron
star, assuming the full likelihood function (solid line) or a Gaussian approximation
(dashed line).
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∫∝ … … …
− +

 P p p p p M M p M p M( ) d d d d d d d ( , ) ( , ), (7)i p p N N1 2 1i i p d1 1

where  is the likelihood and  is the prior distribution. This integral is typically evaluated
using a Monte Carlo method. One may directly parameterize theM–R curve and compare it to
the data or parameterize the EOS of dense matter, εP ( ) and then use the TOV equations to
compute the M–R curve at each point in the Monte Carlo integration. Each parameterization
(given a fixed data set) is a different model. A particular advantage of this formalism, as
applied in [3, 24, 27, 29–31], is that one need not assume any correlations between the
properties of matter near the saturation density and matter in the inner core of the neutron star.
Matter in the core may be best described, for example, by quark degrees of freedom and have
little similarity with neutrons and protons at the saturation density.

Models can be compared with each other by computing the Bayes factor. The Bayes
factor of model A with respect to model B is the ratio, ≡B E EAB A B, where E is the evidence

∫=  E p M p M p Md d ( , ) ( , ) (8)

Note that the two models need not have the same number of parameters. The Bayes factor is
equivalent to betting odds: =B 10AB implies that model A is ten times more likely than
model B.

Several different models can be compared with Bayes factors, a strategy employed in
[24]. This work used Bayes factors and an analytical model of the neutron star atmosphere to
show that different values of the ‘hydrogen column density’ were favored. The hydrogen
column density is a parameter which characterizes the extent to which x-rays are absorbed
between the neutron star and the detector. [24] also found a model where some neutron stars
have Helium atmospheres was favored. Recent work in [32], including more observational
data, has confirmed a lower hydrogen column density for the neutron star in the ω Cen
globular cluster and a Helium atmosphere for the neutron star in NGC 6397, as partially
predicted in [24].

4. Predictions, the nuclear symmetry energy, and the neutron skin thickness of
lead

Given any function  p( ) of the model parameters4, one can use the best fit to compute the
predicted value, μ= p( ). To compute the uncertainty in the prediction, one can compute a
probability distribution

∫ δ= −  P F Fp p p p( ) d ( ) [ ( ) ] ( ). (9)

This integral is easier if  can be accurately described by a multivariate Gaussian, because
one can directly sample the likelihood function using the Cholesky decomposition of the
covariance matrix. When the Gaussian approximation is inadequate, as in the neutron star
problem discussed above, and the likelihood function must be indirectly sampled, e.g.
through Markov chain Monte Carlo. In order to make the Monte Carlo more efficient, the
Gaussian approximation can be used as a proposal distribution in a Metropolis–Hastings step.

Figure 3 demonstrates how the Gaussian approximation of the likelihood function dis-
cussed in section 2 affects predictions for nuclear masses. The nuclear mass model of [12] is
fit to the nuclear masses from the UNEDF collaboration [33]. Equation (9) is used to predict
the binding energy of Sn137 . Uniform prior distributions are used to allow a straightforward

4 Because this section is more general, the explicit reference to the neutron star masses, M, is removed.
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comparison to what would be obtained in the frequentist method. Two results are presented,
with and without the Gaussian approximation of the likelihood function. It is clear that the
Gaussian approximation systematically predicts less binding.

A quantity of central interest in low-energy nuclear physics is the nuclear symmetry
energy, the energy cost to create an isospin asymmetry. Given the energy per baryon of
neutron matter as a function of the baryon density, E n( )Bneut , and the energy per baryon of
nuclear matter E n( )Bnuc , the symmetry energy can be defined as the difference

≡ −S n E n E n( ) ( ) ( )B B Bneut nuc . Of particular interest is the value of the symmetry energy at
the nuclear saturation density, ≡ =S S n n( )B 0 , and its derivative, ≡ ′ =L n S n n3 ( )B0 0 .

Arguably, two of the best ways to obtain constraints on the nuclear symmetry energy are
from nuclear data and neutron star observations described in sections 2 and 3 above. Nuclear
masses offer a strong constraint on a linear combination of S and L, but do not determine the
two quantities separately [34]. Neutron star radius measurements and measurements of the
neutron skin thickness of lead both strongly constrain L and are weakly correlated with S [35].

In part motivated by the connection between the neutron skin thickness in lead, δR, and
the parameter L, several recent experiments have measured the skin thickness. The PREX
experiment, which uses parity violating electron scattering, found δ = −

+R 0.33 0.18
0.16 fm [36].

This weak probe of nuclear structure should have smaller systematic uncertainties than those
from strongly interacting probes. A more precise (but more model-dependent) result of
δ = −

+R 0.15 0.06
0.04 fm was recently obtained from photoproduction of pions at the MAMI elec-

tron beam facility in [37]. Using probability distributions determined by neutron star radius
measurements, several authors have determined the parameter L [3, 29, 30, 38]. [29] predicted
the neutron skin thickness would be less than 0.20 fm, consistent with both the recent PREX
and MAMI measurements. In this work, fits employed four seperate models (named A, B, C,
and D) and different interpretations of the neutron star data in order to attempt to assess the
systematic uncertainty (see figure 4 of [29]). It remains to be seen if the prediction of the

Figure 3. Predicted probability distribution for the mass of Sn137 given the nuclear
mass model of [12]. The black solid line gives the full result from equation (9) using a
Monte Carlo simulation without any approximation and the blue dashed line gives the
result using a Gaussian approximation for . The latter underestimates the predicted
binding energy.
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neutron skin thickness of lead from neutron star observations in [29] will prove true with
more accurate experiments, such as PREX II.

In general, uncontrolled systematic uncertainties are particularly pernicious for predicted
values. There is no method which guarantees that reality lies between any computed con-
fidence interval which is obtained from the data. In the context of energy density functionals,
there is a long history of using several nearly equivalent models of the same data in order to
estimate the systematic uncertainties, as done in the neutron star analysis above, as earlier
done in [39–41] and as discussed in [21]5. Studies of inter-model dependence are important,
even when one is not focused on predicting a particular observable, because they help
diagnose cases where a model may fit the data accurately with an incorrect physical
mechanism.

5. Completeness versus accuracy

The purpose of making a model is two-fold: the first is to provide insight regarding the
physical mechanisms which underlie the observed data, and second is to make predictions.
These two purposes are sometimes at odds: the ability of a model to make predictions must
often strike a balance between attempting to describe the most complete set of currently
available data, and describing a small set of data with high accuracy. This qualitative picture
is behind the practice (in Bayesian inference) of using different prior distributions for para-
meter estimation than those used for model comparison.

Much of the recent work surrounding the description of nuclear structure observables has
focused on generating an energy density functional. The Kohn–Sham theorem suggests that,
if the correct energy density functional was found, one could accurately describe all nuclei at
the level of single reference Hartree–Fock–Bogoliubov (see e.g. [33]). In many works, the
purpose is mainly that of completness: one describes as large of a data set as is possible in
order to obtain the best energy density functional. Part of the promise of chiral effective
theory is that we might not have to sacrifice completeness for accuracy (see review in [42]),
and progress is being made in this direction in lighter nuclei. On the other hand, very accurate
descriptions of neutron-rich calcium isotopes have been obtained with coupled cluster
methods [43, 44] with interactions which might otherwise have difficulty describing nuclear
matter at the saturation density [45].

In the context of nuclear masses, this tension between completeness and accuracy is
demonstrated in figure 4, where two mass models from [12, 46] are used to predict the mass
of 137Sn. In the left panel, the full experimental mass data set from [47, 48]. The mass models
predict rather small statistical uncertainties, but the systematic uncertainties are at least
3 MeV. In the right panel, the models are fit to a more limited data set in the Sn region, and
while the statistical uncertainties are nearly unchanged the systematic uncertainties appear
smaller. Of course, two models are insufficient to make any conclusive statements about the
magnitude of systematic uncertainties, but this plot illustrates the basic point.

Constraints on the nuclear symmetry energy will be improved by understanding this
tension between completeness and accuracy. It might be possible to obtain models which
more accurately describe the symmetry energy by fitting to only carefully selected nuclear
data and avoiding complications of attempting to describe nuclei which are currently not well-
described by Hartree–Fock–Bogoliubov. In more detail, the best constraints on the symmetry

5 These studies can be viewed as an inexpensive and rough way of performing a hierarchical Bayesian analysis. In
particular, they are only representative of the systematic uncertainty so long as they faithfully represent the space of
reasonable models.
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energy will come from an fitting several models to a data set which is specifically optimized
to generate the smallest combination of (i) the uncertainty in the fit and (ii) the systematic
uncertainty implied by the variation between models. This optimization of this data set should
include varying the individual weights, wi, in the χ2 function to ensure the highest possible
accuracy for the symmetry energy. In addition to nuclear masses and charge radii described
above, giant resonance data will likely be helpful in determining the symmetry energy. When
the systematic uncertainties of neutron star mass and radius observations are sufficiently
small, they will also provide a powerful constraint.

6. Discussion

The analysis of neutron star data has a low computational requirement; a single solution of the
TOV equations is much faster than the accurate determination of several nuclear masses and
charge radii from an energy density functional. This low computational requirement has
enabled the use of Bayesian analysis to attempt to understand currently available neutron star
data. A similar statistical analysis for the matching of energy density functionals to low-
energy nuclear data is not yet possible. Nevertheless, the analogy permits recommendations
on future directions for fits to energy density functionals.

• Likelihood functions should be published and made widely accessible6. If the likelihood
function is sufficiently accurate for predictions, then publishing the best fit and the
covariance matrix is sufficient. Otherwise, the likelihood function can either be tabulated
or represented by a Markov chain of several points. In the neutron star case, this latter
procedure was used in [27]; a list of points sampled from the likelihood function was
provided for each model. This list can be directly used by other authors to provide

Figure 4. A demonstration of the competition between completeness and accuracy.
Solid lines use the model from [12] and dashed lines use the mass model from [46].
Left panel: the predicted binding energy of 137Sn when fitting all measured nuclear
masses. Right panel: the binding energy of 137Sn when fitting only Sn, In, and Sb
isotopes.

6 Thanks to David W Hogg for arguing that likelihoods ought to be published in his research blog.
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predictions based on the same astronomical data. Also, the differences between the
likelihood functions between models can be used to obtain an estimate on the systematic
uncertainty as described above.

• The classical χ2 procedure can be applied in cases where it is inappropriate, clouding our
ability to properly interpret the data. Important methods to alleviate this issue include
examining the residuals from the best fit model [21], and systematically refitting with part
of the data set removed (as e.g. done in the neutron star context in [49]). In addition, one
critical issue is the potential for correlations between our systematic uncertainties. More
work needs to be done to understand how these correlations might potentially affect
results. These correlations can be explicitly modeled using the method described in [22].

• A method for obtaining modern constraints on the nuclear symmetry energy is proposed
in the previous section. Generalizing this method, the ability of a model to make
predictions should drive the data set which is included in χ2 fits and the associated
weights that are used. This can only be effectively done when the systematic
uncertainties of the model are assessed, either by a reasonable physical argument or a
study of the variation among several models. The exception to this is when a more
complete description of the data is likely to provide physical insight. The ability to make
more accurate predictions will be useful, in particular, to those communities (like neutron
star astronomers) who need nuclear data for their models.
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