Vector Formulas
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VECTOR CALCULUS =~ =~ =

Cylindrical coordinates (z,r, a):
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Physics 841: Classical Electrodynamics I
Final Subject Exam (Total: 50 points)
April 29, 2003

- PERSONAL NUMBER:

Problem 1. A relatlwstlc electron is moving 1n51de a constant electromagnetlc field
in which the electric field E is along the positive y-axis, and the magnetic field His
along the positive z-axis. Suppose the magnitude |E| of the electric field is half of
"|H|, and at time ¢ = 0, the elctron is at the origin (Z = 0) with a constant velocity

= -— along the posmve :c-axls, ‘where ¢ is the speed of hght We shall denote this

' reference frame as the k-frame. : .
(2 points) (a) Find the &’ -frame in Wthh elther the electnc or. ma,gnetlc ﬁeld vamshes
(3 points) (b) Find the velocity of the electron in the &'-frame. .
(2 points) (c) Find the trajectory of the electron, i.e. the posﬂnon o of the electron
as a function of ¢, in the k'-frame. .
(3 pomts) (d) Find the trajectory of the electron, ie. the position Z of the electron
as a function of ¢, in the k-frame by performing Lorentz transformatlon on the result -
found in (c). : ‘ |
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- /Problem 2. The charge density inside a sphere of radius Ris |
U Ry =@ —Bsinte); W

" where py is a constant, and 6 is the polar angle with respect to the z-axis that passes

* through the center of the sphere. (The origin is located at the center of the sphere.)

3 points) (a) Find the total charge, the electric dipole moment and the- electric
quadruple moment of the charged sphere. - = S

(7 points) (b) Find the electric potential at any point ;inside thechargad éphéi‘e, as-

suming that the electric potential at the origin is zero. -
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‘Problem 3. ‘A long conducting cylinder (along the z-axls) of radlus ais placed 1n an
~initially uniform constant electric field B = Eg. o -

1 pomts) ( a) Fr_nd the initial scalar potential U,, correspondmg to the 1mt1ally uni- -
~form const electric field E = E#, at any point in: spa.ce, in terms of the radral
distance p and azimuthal angle ¢, as shown in figure. .

(2 points) (b) Find the boundary conditions for the ﬁnal scalar potentral U s Whrch

_is the potentlal after placmg the conducting cylinder. ;

(5 points) (c ) Find the final scalar potentlal U f at any pornt in space, m terms of P

and ¢.
(2 pomts) ) Determme the surface charge densxty mduced on the surface of the
,conductmg cyhnder S i S,

V}o |
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Problem 4. In a field emission microscope, charged particlevs_(yglect_‘:mns): leave é;"hemi—
“spherical tip (radius a) of a needle-shaped cathode and move toward a concave, con-
centric, hemispherical anode (radius b), as shown in figure. The current in the cathode

and anode is I, and the charged particles constitute an equal convection current while

" they are on their way from the cathode to the anode.

To simplify the problem, we assume that a is very small as compared to b, the flux
density of the particles. is constant at all points of the tip (cathode), and that the
particles move radially toward the anode. L R
(3 points) (a) Determine the convection current density (per unit area). ‘

(7 points) (b) Find the magnetic field at any point between the cathode and the
anode, in terms of the radial distance r and the polar angle 6. R °




