Phenix Data Acquisition Notes

July 23, 2009

(Bickley, Purschke)

DAQ Infrastructure:

FEM – data header and packet made by heap manager

DCM – VME based FPGA board; supports 4 FEMs; applies data formatting, zero suppression and packet creation; zero suppression uses pedestal lookup table and list memory; 12.5 kHz event rate; 200 total in 16 VME crates

PAR – VME based controller that transmits data from all DCMs in crate

SEB – responsible for assembling all partitions from a single detector; operate at 40MByte/s; 32 total

EVB/ATP – assembles all sub-events into a single event; 140 MByte/s; 28 total

BB – 4 disk RAID array for temporary data storage

Data Structure:

Run – assembly of events collected sequentially in time
Run Envelope – defines outer boundaries of run

Run Header – in units of ? bytes, contains limited information to identify run

Event – variable length in units of ? bits; event header identifies number of bits in event to allow corrupt events to be skipped;

· evt->identify(); returns run number, evt length, number of frames, evt type

· Event 1 should be the begin run event and contains only configuration information specific to the detector (voltage conditions) and beam (species & energy);

· The last event of the run is the end run event and contains scalar & beam counter info

· Data events contain raw detector output

· Scalar events contain scalar values

Visual representation of a RUN:

Event - variable size in units of ? bits; event header identifies number of bits in event to allow corrupt events to be skipped

Event Envelope – defines outer boundaries of event
Event Header - in units of 32 bytes, contains limited information to identify event

Packet – every FEM is associated with a single packet allowing geographical location to be determined by packet id; variable length in units of ? bits; packets can be included in any order

· Packet->identify(); returns packet id, length, format and identity tag (decoder)

Visual representation of an EVENT:

Packet – every FEM is associated with a single packet allowing geographical location to be determined by packet id; variable length in units of ? bits

Packet Envelope – defines outer boundaries of packet

Packet Header – in units of 16 bytes, contains hit format (which is associated with an unpacker), bit length, event number, packet length, FEM board id, byte swap

· Start marker word, detector id, event number, module address, flag word, beam clock counter, AMU cell 1, AMU cell 2, AMU cell 3, user words 0-7

Channel – channels can be included in any order (?)

Visual representation of a PACKET:

PDAQ:

[image: image1.wmf]
Camac – supports readout of camac modules through the CES8210 VME-to-CAMAC interface board; limited library of module classes already available

VME – must have VxWorks processor (MVME 162, MVME 167, MV2301); processor is responsible for reading the devices in the readout list when an interrupt is received and sending the data to the Unix host; limited library of module classes already available

TCP/IP – handles communication between VxWorks and Unix platform; typically expect 100Mb/s for 1Gbit Ethernet

Event Server – receives events from VxWorks, writes events to a file and writes selected events to DD pool

DD Pool – data distributor pool from which monitoring processes can retrieve event data to be sampled

Disk File – hard storage location for all event files

Consumer Analysis – detector specific analysis code to be run over a subset of the data

Consumer Debug – detector specific debugging code to be run over a subset of the data

Pdaq backend – hosts files to operate system, boot server for VxWorks, receives packaged data from VME, writes data to disk, runs data analysis & online monitoring software; all contained within a single Linux PC

Trigger – must be provided externally to VME interface board 8210

Running PDAQ:

· daq_init: System initialization is responsible for starting all processes, interrupt handlers, creating objects

· daq_create_readoutdevice(“acronym”, evttype, subevent, branch, crate, slot, subaddress) – syntax to define a camac device;

example: daq_create_readoutdevice(“LC2249W”,1,1005,0,1,5,0)

evttype tells the daq when to readout the device; evttype 1= data event

subevent tells the daq how to store the data; defined in analysis software

· daq_create_readoutdevice(“acronym”, evttype, subevent, device specific….) – syntax to define a VME device;

example: daq_create_readoutdevice(“Hammond”,1,1101,0x2000000)

· ndd_event_server ‘runfilename’ TCP/IP port - configures event server setup on unix platform

example: ndd_event_server ‘run_%05d.evt’ 5005 &

· daq_set_host (“linux pc ip address”, TCP/IP port) – command required for VxWorks terminal to access event server

example: daq_set_host (“130.199.22.90”, 5005)

· daq_open – command given in VxWorks terminal to open connection to event server

· daq_begin run# - command given to VxWorks terminal to initiate data readout

example: daq_begin 1

· daq_end – end the run

· daq_close – break the connection to the event server

· Remote Procedure Call – handles all interface controls of the system; is a core component of NSF therefore is naturally available on any platform; analogous function to Corba; operates Unix shell mode

· Unix Shell Mode – allows system to be controlled from a single master process instead of implementing each command individually; all front-end commands applicable as space-delimited parameters within Unix shell; requires environmental variable to be set to access name server

example: setenv DAQ_RPC_HOST iocondev5.phy.bnl.gov

· Main script – process initiated in Unix shell that calls all necessary subroutines for data taking; subroutines can interact with RPC to allow communication with the event server

· Read loop – process maintained by daq backend that is initiated by daq_begin, managed by RPC and terminated by daq_end; consists of 1) wait for trigger 2) read data 3) store data 4) repeat; specific to VME system

Application to AT-TPC:

· General framework of Pdaq backend can be adapted for AT-TPC purposes.

· A new read loop must be written to handle communications with the uTCA crate.

· Daq continuously pings crate to determine when a trigger is available then initiates read/write handshake

· uTCA initiates transmission of data to daq backend allowing minimal use of cpu time

· Single Linux cpu can reasonably handle 300MB/s load

· Store data on local disk and transfer off during down time

· Pdaq is not setup to handle multiple host event building

· Can reasonably expect 100MB/s from 1Gbit Ethernet and 1GB/s from 10Gbit Ethernet

· A linux box can be used as a uTCA crate emulator with simulated events as data stream to measure rates of transmission

· Long term data storage: Frank Quarant, quarant@bnl.gov

· Consider dcache for user access to files

Detector

Granule Timing Module

Local

Level 1

Trigger

FEC

FEM

1Gbit/s fiber

Data Collection Module

……

Partition Module

Sub Event Builder

LVDS

Master Clock

switch

Event Builder/ATP

Buffer Box

Run Envelope

Run Header

Event 1

Event 2

Event 3

Event 4

……

……

Packet 4

Packet 3

Packet 2

Packet 1

Event Header

Event Envelope

……

Channel 4

Channel 3

Channel 2

Channel 1

Packet Header

Packet Envelope

Pdaq front end

Pdaq backend

