
T2K TPC – DAPNIAT2K TPC – DAPNIA

DCC KIT DAQ USER MANUALDCC KIT DAQ USER MANUAL

Shebli Anvar, Dapnia/Sédi/Lilas
T: +33 1 69 08 78 32
M: +33 6 63 31 92 26
@: Shebli.Anvar@cea.fr

Version 1.0

DCC KIT DAQ USER MANUAL VERSION 1.0 PAGE 2/6

1.1. IINTRODUCTIONNTRODUCTION

This document describes the use, the formatting of the data files produced by the DCC Kit Daq (DKD)
software and the programmatic way to access configuration parameters. It is needed for the proper
analysis of all data acquired with the DKD. A first section is briefly describes how the DKD interface
relates to data files and configuration; the second section is dedicated to the data files format. The third
section describes the C++ API that allows to access configuration parameters.

2.2. DKD IDKD INTERFACENTERFACE

Figure 1 is a screen shot of the DKD graphical user interface (GUI) :

Figure 1: DCC Kit Daq (DKD) Graphical User Interface

DCC KIT DAQ USER MANUAL VERSION 1.0 PAGE 3/6

The Configuration PanelThe Configuration Panel

The function of the “tree-like” left panel is to display and edit the configuration parameters of the run.
The exact logic, semantics and use of the configuration will be fully described in a future document. The
main features of the configuration is as follows :

▪ A configuration is a tree of objects, sub-objects, etc. until you reach leaf values which represent
the actual parameters of the run.

▪ Parameters (leaf values) can be of 5 types : integer (signed), hexadecimal (unsigned), real
(double), boolean and string.

▪ A parameter is specified by a path in the tree, a name and an optional index. For instance, you may
see on the screen shot the string parameter

Daq.DCC.Fem[*].acqType
having the value “standard”, or the integer parameter

Daq.DCC.Fem[*].FEC[*].ASIC[*].gain
having the value “120”.

▪ A parameter can have an optional unit which has no other incidence than adding some human-
readable information (see examples on screen shot). It can also have a range that restricts the set
of values it can take. Ranges are either intervals like [0x0, 0x1FF] or enumerations like
{120, 240, 360, 600}.

▪ The ‘*’ index indicates default values that are inherited by objects with the same path using
specific indexes. For instance, the Daq.DCC.Fem[*] object contains default values for all
Daq.DCC.Fem objects. Naturally, a default value or object can be overridden with specific
values in specific instances. A value inherited from a default object is displayed in blue. An
overridden value is displayed in red.

The Acquisition Control PanelThe Acquisition Control Panel

The acquisition logic follows a “state machine” represented in Figure 2, where rounded rectangles
represent the Daq states and the arrows represent the transitions that occur when the specified ‘event’
(arrow label) is issued:

The ‘Scripts’ transition loads the configuration specified in the ‘tree view’ panel and produces all the
scripts necessary to initialize and run the Daq hardware. The ‘Configure’ transition initializes the

Figure 2: DCC Kit Daq State Machine

IDLEIDLE STANDBYSTANDBY READYREADY RUNNINGRUNNING

SCRIPTSSCRIPTS CONFIGURECONFIGURE START RUNSTART RUN

RESETRESET STOP RUNSTOP RUN

RESETRESET

DCC KIT DAQ USER MANUAL VERSION 1.0 PAGE 4/6

hardware and the ‘start run’ transition starts the actual data taking.

WARNING: any modification in the configuration (on the ‘tree view panel’) will be actually taken into
account only in transition ‘Scripts’. For example, if you modify the configuration when in a state other
than ‘Idle’ and you want that modification taken into account for the next run, you have first to issue
‘Reset’ and then ‘Scripts’.

On Figure 1, the acquisition control panel is the one to the upper right. The topmost “sunken” label
displays the current state of the acquisition; the enabled buttons represent the ‘events’ that the user can
issue to the Daq state machine.

The Run Monitor PanelThe Run Monitor Panel

When in state ‘Running’, this panel gives a number of basic informations on the current run. In other
states, it gives the same information on the previous run.

‘Run ID’ is the run number: it is used to compute the file names associated with the run. The label on the
right of ‘Run ID’ displays the run duration in hours, minutes and seconds.

‘Run UID’ is the unique ID of the run and results from the exact UTC date and time when the run started.
The Run UID will be written at the beginning of the data file produced by the run. It is made of exactly 20
characters.

The ‘Data (MB)’ label displays the size in megabytes of the data file produced by the run.

The ‘Event’ label displays the number of events acquired in the run.

The ‘Path’ label display the default file path of the run. This path is the directory where the data and
configuration files of the run are created. A click on the ‘Path...’ button allows the user to choose another
path.

The ‘Data file’ and ‘Config file’ labels display the file names in which the data and configuration
associated with the run are stored.

3.3. TTHEHE D DATAATA F F ILEILE F FORMATORMAT

The data acquired by a run are stored in the file named “RUN_XXXXX.acq” where ‘XXXXX’ is the five
character long run number (with leading zeros if necessary). The file will be situated in the default path of
the run. On Figure 1, the full data file path is C:/anvar/Data/RUN_50029.acq.

▪ The first 20 bytes of the data file will always begin with the Run UID, i.e. the 20 characters
representing the T0 of the run. Example: ‘R2007.08.23-10:12:47’

▪ The rest of the file is filled with an indefinite number of events, each event being composed of
one header and raw data. The raw data format is the one specified by Denis Calvet in the
document entitled : T2K TPC Read-out Electronics – Digital Front-end Mezzanine Card Design
Notes.

▪ The event header is 8 bytes long. It includes two 32-bits integers respectively representing the
‘event size’ in bytes and the ‘event number’. The ‘event size’ is the total event size, including the
8 bytes of the header, which means that it is at least equal to 8.

DCC KIT DAQ USER MANUAL VERSION 1.0 PAGE 5/6

The following drawing summarizes the data file format:

WARNING: All binary numbers are in “Big Endian format”, also called the “network byte order”
meaning that the most significant bytes come first. On Intel platforms, the numbers are in “Little Endian”
format so that when you read a Big Endian 4-byte integer from the data file, you have to swap the bytes.
This is done using the ntohl() and ntohs() standard functions respectively fort 32-bit and 16-bits
integers (The meaning of the function names are ‘network to host long’ and ‘network to host short’). To
use these functions you have to include <arpa/inet.h> on Linux/Unix platforms and
<winsock2.h> on Windows.

Here is an example in C/C++ showing how to read a data file:

#include <arpa/inet.h>
#include <stdio.h>

char rawData [200 * 1024];
struct Header
{

int eventSize;
int eventNumb;

}

int main()
{

// Open binary file
FILE* f = fopen("RUN_00001.acq", "rb");

// Read Run UID characters
char runUid[21];
fread(runUid, 1, 20, f);
runUid[20] = '\0'; // Null terminated C string

// Event loop
Header head;
while (true)
{

// Read next header or quit of end of file
if(fread(&head, sizeof(Header), 1, f) != 1)
{

fclose(f);
return 0; // End of program

}

// Byte swap
head.eventSize = ntohl(head.eventSize);
head.eventNumb = ntohl(head.eventNumb);

Run UID (20 bytes)

Event Header
(8 bytes)

Raw Data Raw Data

Event Header
(8 bytes)

DCC KIT DAQ USER MANUAL VERSION 1.0 PAGE 6/6

int rawDataSize = head.eventSize – sizeof(head);

// Read Raw Data
fread(rawData, 1, rawDataSize, f);

/* ... DECODE AND PROCESS RAW DATA ... */
}

}

4.4. AACCESSINGCCESSING T THEHE C CONFIGURATIONONFIGURATION P PARAMETERSARAMETERS

Each time the ‘Scripts’ event is issued to the Daq state machine, the configuration is cloned and when
‘start run’ is issued, it is copied into the corresponding file: ‘CFG_XXXXX.xml’ where ‘XXXXX’ is the
run number. As indicated by its extension, this is an XML file implementing the configuration semantics.

The users can access configuration parameters either by directly parsing the XML file or using the
associated C++ API called ‘CCfg’ (as “Compound Configuration”).

A CCfg file is opened by declaring a CCfg::Io::Document object and loading the configuration
stored in a file:

CCfg::Io::Document cfgDoc;
Ccfg::View::Object cfg(&cfgDoc.load("CFG_00023.xml"));

The parameters are accessed using the () operator. For instance, here is the way to access the value of
Daq.DCC.Fem[0].FEC[1].ASIC[3].gain in your program:

int gain = cfg("Daq")("DCC")("Fem",0)("FEC",1)("ASIC",3)("gain");

NOTE 1: Indexes appear as a second parameter in the () operator. Indexes can be either integer or string
values.

NOTE 2: You do not have to use the whole path every time: any object of the configuration can be stored
in a corresponding variable. For instance if you want to access many parameters belonging to
Daq.DCC.Fem[0].FEC[1], you can store this object is a variable:

Ccfg::View::Attribute fec = cfg("Daq")("DCC")("Fem",0)("FEC",1);
int gain = fec("ASIC",3)("gain");
double s = fec("ASIC",3)("channel",1)("transferFunctionSlope");

More information (and a tutorial) on the CCfg semantics and usage can be found at the address:

http://svom.extra.cea.fr/doc/Config/CompoundConfig/html/

	The Configuration Panel
	The Acquisition Control Panel
	The Run Monitor Panel

