NATIONAL
INSTRUMENTS

Getting Started with CompactRIO -
Performing Basic Control

Click here to view the list of other articles

The National Instruments CompactRIO programmable automation controller is an advanced embedded
control and data acquisition system designed for applications that require high performance and reliability.
With the system's open, embedded architecture, small size, extreme ruggedness, and flexibility, engineers
and embedded developers can use COTS hardware to quickly build custom embedded systems. NI
CompactRIO is powered by National Instruments LabVIEW FPGA and LabVIEW Real-Time technologies,
giving engineers the ability to design, program, and customize the CompactRIO embedded system with
easy-to-use graphical programming tools.

CompactRIO combines an embedded real-time processor, a high-performance FPGA, and hot-swappable
I/O modules. Each 1/0 module is connected directly to the FPGA, providing low-level customization of timing
and I/O signal processing. The FPGA is connected to the embedded real-time processor via a high-speed
PCI bus. This represents a low-cost architecture with open access to low-level hardware resources.
LabVIEW contains built-in data transfer mechanisms to pass data from the I/O modules to the FPGA and
also from the FPGA to the embedded processor for real-time analysis, postprocessing, data logging, or
communication to a networked host computer.

oo VOModules .
: Signal Serew |
— e DS B
- ! Sigrul i
E} DAE —F fooiioning > BNC ,
PC1 Bus :[>> et ;
; Signal :
W e g € DeSub Z;’I-
[B e e e e e e e e J
> 00— S — Cswn
................................... J
Real-Time High-Speed Heconfigurable Digitizers Attenuation Connector SENS0rs
Processor Bus FPGA and Isalation and Filtars Block and Actuators

C Series 1/0 Modules

©National Instruments. All rights reserved. LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National
Instruments. See ni.com/trademarks for other NI trademarks. Other product and company names are trademarks or trade names of their respective companies. For patents covering
National Instruments products, refer to the appropriate location: Help>>patents in your software, the patents.txt file on your CD, or ni.com/patents .

http://sine.ni.com/np/app/culdesac/p/ap/global/lang/en/pg/1/sn/n24:cRIO/docid/tut-11394
http://www.ni.com/trademarks
http://www.ni.com/patents

A variety of 1/0O types are available including voltage, current, thermocouple, RTD, accelerometer, and strain
gauge inputs; up to £60 V simultaneous-sampling analog 1/O; 12, 24, and 48 V industrial digital I/O; 5 V/TTL
digital 1/0; counter/timers; pulse generation; and high voltage/current relays. Because the modules contain
built-in signal conditioning for extended voltage ranges or industrial signal types, you can usually connect
wires directly from the C Series modules to your sensors and actuators.

FPGA

The embedded FPGA is a high-performance, reconfigurable chip that engineers can program with LabVIEW
FPGA tools. Traditionally, FPGA designers were forced to learn and use complex design languages such as
VHDL to program FPGAs. Now, any engineer or scientist can use graphical LabVIEW tools to program and
customize FPGAs. Using the FPGA hardware embedded in CompactRIO, you can implement custom timing,
triggering, synchronization, control, and signal processing for your analog and digital 1/0.

Real-Time Processor

The CompactRIO embedded system features an industrial 400 MHz Freescale MPC5200 processor that
deterministically executes your LabVIEW Real-Time applications on the reliable Wind River VxWorks
real-time operating system. LabVIEW has built-in functions for transferring data between the FPGA and the
real-time processor within the CompactRIO embedded system. Choose from more than 600 built-in
LabVIEW functions to build your multithreaded embedded system for real-time control, analysis, data
logging, and communication. You can also integrate existing C/C++ code with LabVIEW Real-Time code to
save on development time.

Size and Weight

Size, weight, and 1/0 channel density are critical design requirements in many embedded applications. A
four-slot reconfigurable embedded system measures 179.6 by 88.1 by 88.1 mm (7.07 by 3.47 by 3.47 in.)
and weighs just 1.58 kg (3.47 Ib).

Starting a New CompactRIO Project in LabVIEW

Starting a New CompactRIO Project in LabVIEW
Begin by creating a new project in LabVIEW, where you will manage your code and hardware resources.

1. Create a new project in LabVIEW by selecting File » New Project

2 www.hi.com

2. To add your CompactRIO system to the project, right-click on the Project item at the top of the tree
and select New » Targets and Devices...

[B3 Project Explore: - Untitied Project 1 Sy <
Fle Edit Yew Project Opente Jook Window Help |
%) 55 W 9 o 8 b | B~ o
Rems Fm,-'_ - _|
c ”H_Mm i
5 Depdencies | e

L 'l‘- Build Spetc il aticn
S Mew...

3. This dialog allows you to discover systems on your network or add offline systems. Expand the
Real-Time CompactRIO folder, select your system, and click OK. Note: If your system is not listed, LabVIEW
could not detect it on the network. Ensure that your system is properly configured with a valid IP address in

Measurement & Automation Explorer. If you system is on a remote subnet, you can also select to manually
enter the IP address.

3 www.hi.com

& -
I3} Add Targets and Devices on Untitied Project 1 |

Targets and Devices
o Existing target or device
9 Digcover an sasting target{s) or device(s).
Specify a target or device by [P address.
New target or device

| Targets and Devices) -
| B FeldPoint Metwork bedules
=i Peal-Time CompactRIO
142 cR10-5074)
[cRI0-5074-MMN
+H) Real-Time Deskiop
+:J Feal-Time FreldPaoant
FH Real-Time Industrisl Contralles
4T Real-Terme PO
#1470 Real-Tirme Single-Board RED
FH Touch Panel

| L] I v

[Reduce discovery timeout

Retsh || OK || Cancel || Help

Select the Appropriate Programming Model

LabVIEW provides two programming models for CompactRIO systems. If you have LabVIEW Real-Time and
LabVIEW FPGA on your development computer, you will be prompted to select which programming model
you would like to use. You can change this setting later in the LabVIEW Project if needed.

Scan Interface (CompactRIO Scan Mode) - this option allows you to program the real-time processor of your
CompactRIO system, but not the FPGA. In this mode, NI provides a pre-defined personality for the FPGA
that periodically scans the 1/0O and places it in a memory map, making it available to LabVIEW Real-Time.
CompactRIO Scan Mode is sufficient for applications that require single-point access to I/O at rates of a few
hundred hertz. To learn more about scan mode, read the Using CompactRIO Scan Mode with NI LabVIEW

4 www.hi.com

http://zone.ni.com/devzone/cda/tut/p/id/7338

white paper and view the benchmarks.

LabVIEW FPGA Interface - this option allows you to unlock the real power of CompactRIO by customizing
the FPGA personality in addition to programming the real-time processor, achieving performance that would
typically require custom hardware. Using LabVIEW FPGA, you can implement custom timing and triggering,
off-load signal processing and analysis, create custom protocols, and access I/O at its maximum rate.

B ‘Select Programming Mode |

Select the programming mode you want to start programming your selected systemi{s) with:

Programming Mode

@ Scan Interface

The Scan Interface enables you to use C Senes modules directly from LabVIEW Real-
Time. This mode requires NI-RIO software with Scan Engine support on the controller.

! LabVIEW FPGA Interface
The LabVIEW FPGA Interface enables you to use C Seres modules from LabVIEW FPGA
Vis.

Hote: Selecting LabVIEW FPGA Intedface mode stops any Scan Interface mode
applications running on the systemis).

l Continue] [Cancel | |___He|p |

=SSR

Select the appropriate programming model for you application.

LabVIEW will now attempt to detect the chassis and C Series I/O modules present in your system and
automatically add them to the LabVIEW Project. Note: If your system was not discovered and you choose to
add it offline, you will need to add the chassis and C Series 1/0 manually. The LabVIEW Help online
discusses this process for scan mode and FPGA mode.

CompactRIO Scan Mode Tutorial

This section will walk you through creating a basic control application on CompactRIO using scan mode. If

5 www.hi.com

http://zone.ni.com/devzone/cda/tut/p/id/7792
http://digital.ni.com/manuals.nsf/websearch/4000A0672DBCD5F78625765A007B9525
http://digital.ni.com/manuals.nsf/websearch/B6EF0427B0AF300386257656004F84E6

you chose to use the LabVIEW FPGA Interface, see the LabVIEW FPGA Tutorial below. You should now
have a new LabVIEW Project that contains your CompactRIO system, including the controller, chassis, and
C Series 1/0 modules. In this tutorial we will be using an NI 9211 Thermocouple input module; however, the
process can be followed for any analog input module. You can also download the solution from here.

1. Save the project by selecting File»Save and entering Basic control with scan mode. Click OK.

2. This project will only contain one VI, which is the LabVIEW Real-Time application that runs embedded
on the CompactRIO controller. Create this the VI by right-clicking on the CompactRIO real-time controller in
the project and selecting New»VI. Save the VI as RT.vi.

[B3 Project Expiorer - Basic logging with & - L RNE
_"Eul_z'_;ﬂ&"_;m_ Eﬁ_ﬁﬁriﬁ_ﬂ:ﬁ:'ﬁﬁ
LoHE XD XKoo |0

ftems | Files |

= e Propect: Basic Bogging with scen masdebvpin)
5 i My Computer
":l:. Dependeries
ni Euiitd Spﬂlfﬁﬂll:ﬂs

' Iﬁm__
= Chassis (cPI0-00

kAl Modl (Slt LK a4 NI e hokier
] ::FI':""*":F':’ T Control
= el St ik Libeary
Warukle
Usibties [
' V0 Server
Dephoy Class
Deplory Al Statechart
Derable Aubodeploy Vanables
e Targets and Devdces...
Asrange by L]
Expand A1
Collape Al
Eemee from Project
Fensme... EZX
Help...
1 Properses
e

3. The basic operation of this application will include three routines: startup, run, and shutdown. A flat
sequence structure is an easy way to enforce this order of operation. Place a flat sequence structure with
three frames on your RT.vi block diagram as shown below.

6 www.hi.com

PO O o e o O LD DT
Shutdown

4, Now add a timed loop to the Run frame of the sequence structure. Timed loops provide the ability to
synchronize code to various time basis, including the NI Scan Engine that reads and writes scan mode 1/O.

7 www.hi.com

Shutdown

5. To configure the timed loop, double-click on the clock icon on the left input node.

Double-chck

6. Select Synchronize to Scan Engine as the Loop Timing Source. Click OK. This will cause the code in
the timed loop to execute once, immediately after each I/O scan, ensuring that any 1/O values used in this
timed loop are the most recent values.

8 www.hi.com

’ -
3 Configure Timed Loop]
Loop Timing Source Loop Timing Attributes
@ Use Built-In Timing Source Pericd Priority
Source Type 1 1| pre 100 2
: Advanced Timing
Deadline Timecut (ms)
| 1 MHz <reset at structure start> -1 1 e -1 -+
Offset / Phase Structure Name
Source namie Gy
ﬂ -+ | SCANnsS umﬂ
synchronize to Scan Engine

i} Use Timing Source Terminal Processor Assignment
Mode Processor
Automatic v 2

Frame Timing Source

This structure does not have multiple frames. To add Action on Late [terations

multiple frames, right click on the border of the loop and < Descard rassed penods

select one of the "Add Frame” menu items.
< Mantain cngqinal phase

7. The previous step configured the timed loop to run synchronized to the scan engine. Now configure
the rate of the scan engine itself by right-clicking on the CompactRIO real-time controller in the LabVIEW
Project and selecting Properties.

8. Select Scan Engine from the categories on the left and enter 100ms as the Scan Period. This will
cause all of the I/O in the CompactRIO system to be updated every 100ms (10Hz). The Network Publishing
Period can also be set from this page, which controls how often the I/O values are published to the network
for remote monitoring and debugging. Click OK.

9 www.hi.com

[I3 Riesi-Time CompactfI0 Properties

| Category
| General
| Conditional Disable Symbals
| V1 Server
| ‘Web Server
User Aeccess
| Host Ervvirenment
| Mucellanegus
il ices Securty

-

Scan Engine Properties
Scan Period
) m =]
Metwork Publishing Period {ms)
100
Scan Engine Prionty
Above tirme critical E |
=
Fauslt Configuration
Configurable Faults Descriptson
| Code Level | | LabVIEW: The Ml Scan Engine Failed to initialize »
I | i 2o oy v [
| sufficient time. If the scanned 1'Q in your |
Uncanfigured | application i not updating properly, contact
_ﬁml umu”"gu'ﬂd T iv_x P Rl TR
65612 Unconfigured Crocusrence Threshald
65613 Unconfigured | ¢ B
63611 Unconfigured | s Tirme Windiow
65600 Unconfigured | Tirne Window
65609 Unconfigured [Q V| v * -
[ok || Concd |[Hop |

9. Now that you have configured the I/O scan rate, it is time to add the 1/O reads to your application for
control. When using CompactRIO Scan Mode, you can simply drag and drop the I/O variables from the
LabVIEW Project to the RT block diagram. Expand the CompactRIO real-time controller, chassis, and the 1/0
module you would like to log. Select AlO clicking on it then drag and drop it into the timed loop on your RT.vi

diagram as shown below.

10

www.hi.com

[B3 Progen Evpioes - humwml.;-'_'i'.}.‘lw1

[P Eot Wew Bromwa Opewte Tooh Wiedow e
v i A
B | Fm
= Progect Basic logging stk noes made bepioy
= N by Cormrputer

e, Buildi Specihicstions
5 [oFIO-BOTE 000165
B Chacs {cFa0-20M)
S Mod (et 1, MERRT)
%

2 am
Z2m T
= mm

t

E
Tpardicmiony

il
£

[{0 AT Bk Dl £ Bl MaJpoae with LESA Frodch ot - 0T =
[E% EM Yew Broec Cpeste Jeon Wwdew Help
| f] o] [(i Mol |oo | 159t Appiemn Fors |- |20l (€5 o]

10. Now we will want to configure the digital module in our project for specialty digital Pulse Width

Modulated output so we can use a PWM signal to control our imaginary heater unit. To do this right click

your digital module in the project and select Properties. In the C Series Module Properties dialog select
Specialty Digital Configuration and a Specialty Mode of Pulse-Width Modulation as shown in the image
below. Specialty Digital mode allows your module to react to pattern based digital I/O at rates significantly

faster than is available with the scan interface. Click OK and your module will now be in PWM mode.

11 www.hi.com

T3 € Serses Moduls Propartses
: [: ¥ oot Speiaky Dugitad Configuraton
1 O - T 5
Speriafy |:|||,||1j.|::.:='.u..|||_-.:.-. Speciaity Mode
Pudie: didth Midulsteer -
Channets Fregsncy (Pered)
idadalina- - =
[¥eu) 2] sk =
| i
| Pz f
P
| P
| WS
PG
| PN
ok J[Comeal [Hep | M
e = e ———— = =

11. Now you are ready to add your PWM output to the block diagram. To do so, expand the Mod2 object in
your project and drag and drop the PWMO item to the block diagram as you did with the AlO I/0 node in the
previous step.

12. Next we will want to add the PID control logic to our program. To do so right click the block diagram to
open the functions palette and click on the Search button in the top right of the palette.

12 www.hi.com

' -] Functions E Searchl
Programming

n : = -
ol T =
: 3[4 iF
Structures Array Cluster, Clas...
i : i
[
Mumeric Boolean String
[! @. b i
nls
[z k
Cnmnarisnn Timinn Malnn & Llze...

13. Search for PID and select PID.vi in the Control Design and Simulation Palette and drag it to your block
diagram in the timed loop and wire the PID VI as shown in the image below.

il el 3
| |

BN

14. Notice that we did not wire the set point input at this time. We did this because it is best practice to
keep user interface (Ul) objects out of your high priority control loop. Since we may want to interact with and
adjust our set point at run time, we will want to create a control we can interact with in our lower priority loop.
We will also want to create single process shared variables for I/O in our high priority control loop. Since we
need two controls in our application (set point and stop) we need to create two new single process shared
variables.

To create a single process shared variable right click your RT CompactRIO Target in the LabVIEW Project
and select New >> Library. Rename your library something intuitive like RTComm. Now right click your new
library and select New>>Variable. This will open the Shared Variable Properties dialogue. Name your
variable Set Point (or whatever you want actually), and select “Single Process” for the variable type in the

13 www.hi.com

Variable Type drop down box as shown in the image below. Leave the Data Type as Double.

T Shared Varable Propeses | I)
| [
RT FIFO -

Scaling

- 15 digit precison]]l

e T

7] Bnable Alesrg
Bt 2
PP L

Abress Type
FESE Wy -

Finally click on the RT FIFO option in the left hand tree and click the Enable RT FIFO check box.

14 www.ni.com

8 | Shared Variable Properties - ﬂ
Waaralle o | Ersbe BT FEFO
Description . -
Metwork FIFO Type: | Sngle Bament -
RY FIFG
Seading
H
o |
i
i
oK Carcel Help
2 oz "
= E = -l

15. Create another single process shared variable in the library you just created. This variable is for the
Stop control we are going to create that will stop our program when we are ready. This new variable should
have all the same settings as the previous Set Point variable with the exception of the type, which should be
Boolean. Once finished, your project should look similar to the image below.

15 www.hi.com

ﬁ Project Explorer - Basic Control - 5. = o

itEilE Edit View Project Operate Tools Window
S HM| xh X9 ek

Items | Files

=&l Project: Basic Control - Scan Modevproj
= B My Computer
. -5 Dependencies M
: +& Build Specifications
=t E‘T,L RT CompactRIO Target (10.0.59.164)
= @@ Chassis (cRIO-9074)
= 'l:i Modl (Slot 1, NIS211)
L L.Ex A
All N
AlZ
AR
od2 (Slot 2, NI 9472}
PWMO
PWM1 N
PWM2
PWIM3
PWIV4
PWMS |
PWIMB y
b g PYYNT
2-[3 RT Comm.ivlib
. i@ Stop
w @' Set Point

-

| =

iy

SRR ER LR R RIS

16. Now we will create our user interface. To do so add a Slide control, Waveform Chart, Numeric control,
and Stop (Boolean) control as shown in the image below.

16 www.hi.com

{3 RT VL4 Front Panel on Basic Control - Scan Mode Iproj/RT CompactRI0 Target |

Ehe- ko Yiow: > Diviedt — Speite: Tooky: Winsow Hep

&[] @[1] [15pt Application Font |~ | [2o~ |-][~ [¢5-]

Set Poi Temp Trend

)= 40
475- 1754

ﬁ- —
425- 35+

40~ 125~
375-

X - Wt
- £ 775

= & 25—
275- |

25— 775
225- =

- |
115~ 175~

15- :

15-

125=- i ﬁ
10- Time

T—E' - -

1 =]
25- ot el STOR
ﬂ_
| b

17. Now we will finish wiring our program. Create a secondary (non timed) loop for your Ul objects and
finish wiring your block diagram as shown in the image below.

17 www.hi.com

18. Note the addition of 1/O to the configuration and shutdown states to ensure your I/O is in a known state
when your program begins and ends.Your basic control application is now ready to run.

View Additional CompactRIO Development Resources
To continue learning, check out the additional resources on the CompactRIO Setup and Services page.

18 www.hi.com

http://sine.ni.com/np/app/culdesac/p/ap/global/lang/en/pg/1/sn/n24:cRIO/docid/tut-11394

