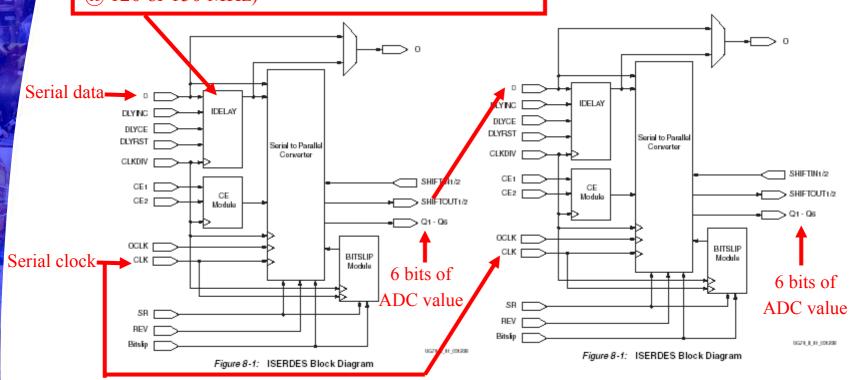

actar



ACTAR workshop - June

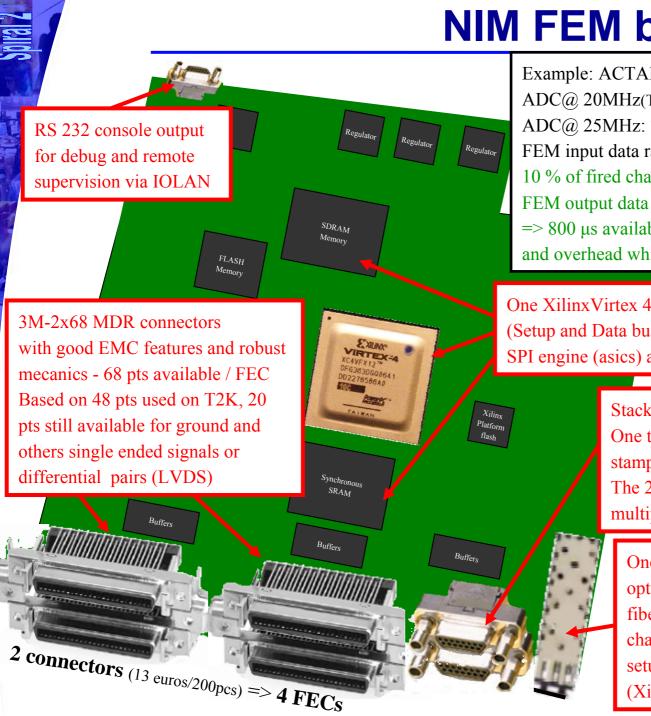
About data alignment & Deserializer

64-tap delay element: Tidelay_resolution ≈ 74ps So 63*74ps, up to 4.66 ns (more than half a period (a) 120 or 150 MHz)

in Xilinx FPGA

Input Serial-to-Parallel Logic Resources (ISERDES)

2 ISERDES to convert the high speed data stream from the ADC (150 Mbit/s) to 12 bits parallel value


The Virtex-4 FPGA ISERDES is a dedicated serial-to-parallel converter with specific clocking and logic features designed to facilitate the implementation of high-speed sourcesynchronous applications. The ISERDES avoids the additional timing complexities encountered when designing desertalizers in the FPGA logic.

Xilinx Press Release

http://www.xilinx.com/prs rls/2007/silicon vir/0760 v4adc.htm and application note @

Global architecture proposal

NIM FEM board details

Example: ACTAR @GANIL

ADC@ 20MHz(T2K): 72 x 511 x 50ns \approx 1.839 ms

ADC@ 25MHz: 72 x 511 x 40ns \approx 1.47ms

FEM input data rate 4 x 300 Mbit/s (12bits/25 MHz)

10 % of fired channels: Tconv. = 147 μ s

FEM output data rate @ 1Gbit/s: Ttransfer $\approx 50 \mu s$

=> 800 µs available for data treatment (zeros sup.) and overhead while keeping 1KHz of counting rate.

One XilinxVirtex 4 FX with enough external memory (Setup and Data buffers) with at least 1 processor for SPI engine (asics) and board supervision

> Stacked 15 pts Micro D connector One to receive clock (100MHz), timestamp information, trig. val., ... The 2nd to transmit the digital multiplicity (ex: 6 bits/4 FECs)

One SFF (or SFP) Gbit optical coupler for duplex fiber used as acquisition channel in TX way and setup/slow control in RX way (Xilinx-RocketIO)

Gilles Wittwer

NIM Back End Module Details

XilinxVirtex 4 FX (PPC405) with large external memory (TCP/IP stack

Internal reference clock (TCXO,VCXO)

Setup done through an

(4 Transmit channels + 4 Receive channels) at the

ACTAR workshop - June 16

3579 euros / unit 2950 euros by 10 x 8 lanes all inclusive

+ 128 MB of DDR2 SDRAM

Based on XilinxVirtex 4 FX100 fpga with two PPC405 processors

Gilles Wittwer

Xilinx V5 back end card details

3 duplex fibers
by PCIe board
via SFP
optical Gbit transceivers

New XilinxVirtex 5 FX70T fpga

with two PPC440 processors

+ 128 MB of DDR2 SDRAM

PCI Express
2.0 compliant
(5 Gb/s by lane)

9805 euros / unit 5200 euros by 10

all inclusive

ACTAR workshop - June 16-18 2008, Bordeaux

Conclusion

In terms of performances

- Input Counting Rate of 2 or 3 kHz seems reachable with 511 cells/ch with 10% of fired channels
- Worst case for a full readout is less than 500 Hz of ICR
- In terms of work (and manpower ...)
 - Minimum of 5 boards to design (2 years/ board with hardware and firmware)
 - Two types of FEC, one FEM, one MUTANT module and one BEM
- In terms of budget for a serial production (except the FEC)
 - 9 FEMs : 9 x 2000 euros = 18000
 - 1 MUTANT module 3000
 - 1 BEM module 3000
 - 1 NIM crate 5000
 - 1 IOLAN 2000
 - 2 PC (Setup & ACQ) 3000
 - 3 PCI express boards (V4) = 9000
 - Duplex fibers, cables ... 2000

TOTAL = $45000 \text{ euros} \Rightarrow 4.5 \text{ euros/channel}$