
Implementing An Active Target Time
Projection Chamber at NSCL

Abigail Bickley
Michigan State University

June 2, 2008



June 2, 2008 Abigail Bickley, NSCL Users Meeting 2

What is the AT-TPC?
• The AT-TPC combines time projection and active target

functionality allowing measurements of:
– Rare processes that require high detection efficiency and large

acceptance
– Low energy processes that are traditionally difficult to measure due to

the short range of the reaction products in matter
• Active Target Mode:

– The chamber gas will act as both detector and target
– Appropriate gas identity and pressure will be chosen to study the

reaction of interest in inverse kinematics
– Limitations imposed by low beam intensities will be addressed by

providing a thick target while retaining high resolution and efficiency
• Fixed Target Mode:

– A target wheel will be installed within the chamber thus the gas will
serve only as a detector

– Configuration will reflect standard TPC conditions (P10 @ 1atm)
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Scientific Program Overview
Table 1: Overview of AT-TPC scientific breadth. 

Measurement Physics Beam 

Examples 

Beam 

Energy 

Min Beam 

Intensity 

Transfer Reactions Nuclear Structure 
32

Mg(d,p)
33

Mg 3 (A MeV) 100 (pps) 

Resonant Reactions Nuclear Structure 
26

Ne(p,p)
26

Ne 3  100  

Astrophysical Reactions Nucleosynthesis 
25

Al(
3
He,d)

26
Si 3  100  

Fission Barriers Nuclear Structure 
199

Tl, 
192

Pt 20 - 60  10,000  

Giant Resonances Nuclear EOS, 

Nuclear Astro. 

54
Ni-

70
Ni,  

106
Sn-

127
Sn 

50 - 150  50,000  

Heavy Ion Reactions Nuclear EOS 
106

Sn - 
126

Sn, 
37

Ca - 
49

Ca 

50 - 150  50,000  

 
• Detector will make use of the full range of beam energies and

intensities available at NSCL
• Portability among vaults is essential
• High resolution and efficiency of detector allow reactions

induced by low intensity beams to be completed in a
reasonable running period
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Active Target Experiments
• Transfer Reactions:

– Coulomb dominated transfer reactions provide the most precise asymptotic
normalisation coefficients (ANC)

– Used to distinguish whether a state has essentially a single-particle nature
– Angular momentum of state obtained from the cross-section energy dependence
– Many transfer cross-sections are highest at energies of 1 – 2 AMeV due to

excellent velocity matching between the initial and final states
– Study (d,p), (3He,d) and (α,t) transfer reactions in the vicinity of closed shells
– Proton energies ~10 MeV in the case of (d,p) reactions
– An example of interest for understanding shell closures far from stability that

will be possible with the AT-TPC is the 32Mg(d,p)33Mg reaction
– Beam energy ≤ 3 AMeV; Minimum beam intensity 100pps

• Resonance Reactions:
• Astrophysical Reactions:
• Fission Barriers:
• Giant Resonances:



June 2, 2008 Abigail Bickley, NSCL Users Meeting 5

Active Target Experiments
• Transfer Reactions:
• Resonance Reactions:

– Study the production and decay of isobaric analog resonance states in both
elastic and inelastic scattering using AZ(p,p), to determines the properties of the
nucleus A+1Z.

– Large cross-sections are typical for this reaction where the interference between
the potential and the resonant amplitudes determines Jπ.

– The gas pressure of the AT-TPC will be adjusted to stop the beam in the
detector, allowing continuous excitation functions to be measured between beam
energy and zero energy.

– Backward CoM angles are important => correspond to 0-45° in lab
– Center-of-mass resolution of 35 keV expected
– Reaction example: 26Ne(p,p)26Ne
– Beam energy ≤ 3 AMeV; Minimum beam intensity 100pps

• Astrophysical Reactions:
• Fission Barriers:
• Giant Resonances:
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Active Target Experiments
• Transfer Reactions:
• Resonance Reactions:
• Astrophysical Reactions:

– Study proton reaction rates relevant for hot and explosive stellar environments
where nuclei are far from stability

– Example: Origin of large galactic abundance of  26Al unresolved
– Proton capture on 25Al followed by 26Si beta decay could be the mechanism, but

depends on the capture cross section and the structure of high lying levels in 26Si
– Use indirect ANC to measure the 25Al(3He,d)26Si transfer reaction
– Very good energy resolution is needed due to the high level density in 26Si.
– A 5 keV deuteron resolution ⇒ 10 keV excitation energy resolution.
– Due to the low deuteron energy (0.4-1.0MeV), a conventional target would need

to be extremely thin
– Beam energy ≤ 3 AMeV; Minimum beam intensity 100pps

• Fission Barriers:
• Giant Resonances:
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Active Target Experiments
• Transfer Reactions:
• Resonance Reactions:
• Astrophysical Reactions:
• Fission Barriers:

– Provide constraints for fission cycling, beta-delayed and neutrino-induced
fission contributions to r-process yields

– Test extrapolations of ground state and fission saddle point binding energies
away from the valley of stability

– Use H2 or He as active target gas
– Beam intensities of 104 particles/s and average fission cross-sections of 0.3 mb,

give of 12 evt/h per MeV excitation energy
– Fission barrier of 200Pb from 78 ≤ Z ≤ 81 measured in 2.5 days
– Require beam energies of 20-60 AMeV

• Giant Resonances:



June 2, 2008 Abigail Bickley, NSCL Users Meeting 8

Active Target Experiments
• Transfer Reactions:
• Resonance Reactions:
• Astrophysical Reactions:
• Fission Barriers:
• Giant Resonances:

– Measurements along isotopic chains constrain the contribution of the symmetry
energy to the nuclear incompressibility

– Extend studies to neutron-rich isotopes such as 54Ni-70Ni and 106Sn-127Sn
– Forward center of mass (CM) angles are essential to separate the l=0

contribution from that of l=2
– Consider inelastic scattering of deuterons instead of α’s because, for pure

helium gas and proportional wires, the maximum gain is low without a quencher
– Both are T=0 probes and the kinematics of the two cases are similar
– To collect 1000 GR counts, a beam of 50,000 particles/s for 3 days is needed,

allowing GR to be studied for 54Ni-70Ni and 106Sn-127Sn
– Requires beam energies of 50-150 AMeV
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Fixed Target Experiments
• Heavy ion collisions with fast beams:

– Study density dependence of symmetry energy
– Density region sampled depends on collision observable & beam

energy
• ρ<ρ0 examples:

– Isospin diffusion
– n/p ratios

• ρ>ρ0 examples:
– Pion energy spectra
– Pion production ratios
– Isotopic spectra
– Isotopic flow

– With NSCL beams, densities
up to 1.7ρ0 are accessible

– Beams: 50-150 MeV, 50,000pps
106Sn-126Sn, 37Ca-49Ca

soft

stiff
?

Li et al., Acta Phys.Hung.A25, 219 (2006).

Density (ρ/ρ0)



June 2, 2008 Abigail Bickley, NSCL Users Meeting 10

 

50cm 
diameter

120cm length

e- drift

NSCL: AT-TPC

TPC Principles

• Particle Tracking:
– Active volume filled with ionizing gas
– Charged particle creates e- clusters
– e-’s drift in electric field to readout plane
– Position of signal on readout plane gives 2D track coordinates
– Signal time of arrival gives drift coordinate
– Connect the dots to reconstruct particle path
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50cm 
diameter

120cm length

e- drift

NSCL: AT-TPC

TPC Advantages

• 4π geometrical acceptance
• High resolution and efficiency tracking
• Variable pressure and identity of gas
• Internal triggering for low energy particles that stop in the detector gas
• Multiplicity triggering for intermediate energy heavy ion reactions
• Sufficient magnetic field to resolve light fragments in heavy ion reactions
• Large dynamic range for particle detection
• Electronics that can accommodate large data volumes and rates
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AT-TPC Chamber Design

NSCL: AT-TPC
• Cylinder - length 120cm, radius 35cm
• Chamber designed to sustain vacuum
• 2cm radius entrance window
• 23cm radius exit window
• Removable target wheel
• 8000pads, 0.5cm x 0.5cm
• Testing wire planes, GEMS & Micromegas for

electron amplification
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Sub - Systems
• Gas Mixing System:

– Monitors & maintains chamber pressure and gas purity
– Identity and pressure of the gas used to fill the detector will be

dependent upon the experimental requirements.
• H2, D2, 3He, Ne, Ar, Isobutane and P10(90% Ar + 10% CH4)
• Pressures ranging from 0.2-1.0 atm

• Laser Calibration System:
– Calibration based on drift rate of laser induced ionization
– Compensates for changing environmental conditions and static

non-uniformities in the magnetic and electric fields
– A predefined fraction of the event rate will be laser triggered

allowing the electron drift rate to be continuously sampled
– Will be installed within detector and will require safety review
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Magnetic Field Considerations

Solenoid
• Beam trajectory centered in magnet
• Beam path independent of beam

species & energy
• Optional field cage can be used to mask

beam ionization
• Narrow downstream acceptance
• Poor momentum resolution at very

forward angles

Dipole
• Good momentum resolution in

forward direction
• Wide downstream acceptance
• Beam trajectory influenced by Bfield
• Beam path dependent upon beam

species & energy
• Difficult to mask beam ionization
• Difficult to distinguish +products

from beam
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Magnetic Field

NSCL: AT-TPC
• Superconducting solenoid
• 2 Tesla Field
• Bore Dimensions:

≥ 70 cm diameter
≥ 120 cm length
≤ 125 cm beam height

• Field Non-uniformity: ≤ 10%
• Consistent with a medical MRI solenoid

TWIST Solenoid
• Superconducting solenoid
• 2 Tesla Field
• Bore Dimensions:

105 cm diameter
229 cm length
107 cm beam height (w/o yoke)
130 cm beam height (w/ yoke)

• Field Non-uniformity: < 1%
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Spatial Constraints
Solenoid

• External Dimensions:
– Diameter = 195.5cm
– Length = 229.0cm
– Height:

• 107.0 cm central field
• 240.0 cm overall
• 274.0 cm min ceiling

• Mass:
– Dry = 7450kg
– Filled = 7800kg

Yoke
• External Dimensions:

– Sides
• 19.5cm thick steel
• 221.0 x 278.4 cm

– Endcaps
• 8cm thick steel
• 261.0 x 252.0 cm
• 40cm hole diameter (will be

expanded)
– Top & Bottom

• 19.2cm thick steel
• 261.0 x 278.4 cm

• Mass:
– Sides = 2 x 9.4E3kg
– Endcaps = 2 x 4.1E3kg
– Top & Bottom = 2 x 11.0E3kg
– Corner pieces = 4x0.94E3kg
– Total = 53E3kg
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S2 Vault



June 2, 2008 Abigail Bickley, NSCL Users Meeting 18

NSCL Footprint
Future

Reaccelerator area
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Fringe Field
• Optimization of yoke design:

– increase the field uniformity in the central region
– decrease range of fringe field
– 10G line currently sits at ?m from endcaps

• Planned yoke modifications:
– expand exit window to maximize downstream

acceptance
– Initial estimates show 10G line extends to 12m in

beam direction and 9.5m in axial direction
– Further studies needed
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Technical Considerations
• Liquid Helium Consumption:

– 100L He(liq) per week
– While ramping the field up or down, with the current lead inserted,

consumption of LHe is significantly higher.
– A ramp to full current takes typically 8 hours and requires about 120L

He(liq)
• Liquid Nitrogen Consumption:

– 110L of N2(liq) per week
• Power Supply:

– Oxford Model 2140, see hardcopy of handbook
– No remote operation, solenoid must be ramped by hand in the vault
– The power supply has a voltage-limited ramp rate. Standard ramping steps:

5V to 100A, 4V to 150A, 3V to 180A, 2V to 195A, 1.5V to 210A, and 1V to
the full 227A

– If the ramp rate is too high, especially near full field, there is a quench risk
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Triggering
• Active & Fixed Target Requirements:

– Beam trigger - provided by PPAC & RF-ToF before beam
enters chamber

– Internal trigger - discriminator incorporated in TPC
electronics to be used as a threshold trigger

• Fixed Target Mode:
– Downstream calorimeter to measure Z of leading particle
– Additional floor space not required in reaccelerated beam

area
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• Investigating opportunities to modify existing T2K electronics
chain to accommodate our requirements

• Effort being led by ACTAR working group
• Internal triggering capability will allow low energy reactions to

trigger on number of channels above threshold
• Dynamic range of ADC is key due to wide range of particle

species to be simultaneously identified ∴ 12bit AFTER+ chip
will be used

• Must sustain 1kHz/chan data rate

Electronics Requirements
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Data Volume

• High collision multiplicity expected
• ~2% channels & time buckets filled
• Results in data volume of :

5 kB/s*chan
50MB/s

112Sn+112Sn, 150MeV, b=2fm

Zero suppressed
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Data Management

• GB fiber link to vault essential
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Timeline & Funding
• Initially submitted as an NSF MRI proposal
• NSF response not expected until end of June
• In the meantime DOE preapplication submitted
• DOE proposal more inclusive of manpower and ancillary detector costs
• Total budget:

– NSF: $429 equipment + $120k manpower + $450k magnet
– DOE: $660k equipment + $645k manpower + $600k magnet

• 2008 - Prototype testing, Mechanical Design, Electronics Design
• 2009 - Electronics Design & Testing, Magnet, Laser & Gas Systems
• 2010 - System Commissioning
• 2011 - First experiments
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Summary
• The AT-TPC is a powerful tool for studying reactions induced by

rare isotope beams.
• The scientific program will exploit the full extent of beam species,

energies and intensities currently available with fragmentation and
reaccelerated beams.

• Active target reactions will study fusion, isobaric analog states,
cluster structure of light nuclei and transfer reactions.

• Scientific program can be conducted with existing rare isotope
beams, but requires a high resolution AT-TPC.

• The AT-TPC will allow these measurements to be made prior to the
completion of the future rare isotope beam facility.


