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Isospin Dependent Observables
• Neutron/proton energy spectra
• Neutron and proton flow

– px vs. y (v1)
– Elliptic flow (v2)

• As a function of pt
– Disappearance of flow (balance energy)

• π+/π - spectra
• π+/π - flow

– px vs. y (v1) and elliptic flow (v2)
• As a function of pt

• Isotope energy spectra
– t/3He ratio, 3He/4He ratios, 6Li/7Li ratios, 6He/6Li

• Isotope flow, p, d, t, 3He, 4He, 6Li, 7Li
– px vs. y
– Elliptic flow

• As a function of pt

As a function of isospin, centrality, and incident energy:
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Density Dependence of Symmetry Energy

• Density region sampled
depends on collision
observable & beam energy

• ρ<ρ0 examples:
– Isospin diffusion
– n/p ratios

• ρ>ρ0 examples
– Pion energy spectra
– Pion production ratios

soft

stiff
?

Li et al., Acta Phys.Hung.A25, 219 (2006).

Density (ρ/ρ0)
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Can sufficiently high densities be obtained?

b = 1fm

NSCL

BUU from: Danielewicz, NPA673, 375 (2000).

RIKEN

Li, nucl-th/0206053

132Sn+124Sn

•  High densities are achieved even in 
   collisions at 80 MeV/A
•  Delta resonances formed early
•  Pions evolve later (shaded regions)
•  Memory of dense region of formation
   depends on reinteractions
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Can a sufficient number of pions be produced?

Li, et al. PRC71, 014608 (2005).

stiff soft

BUU from: Danielewicz, NPA673, 375 (2000).

b = 1fm

Max NSCL energy

(MeV/n)

NSCL RIKEN

Pion production sub-threshold @ NSCL
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132Sn+124Sn
Elab=400 MeV/A
b = 1fm

124Sn+124Sn
Elab=120 MeV/A
b = 1fm

• Pion ratio retains dependence on EOS @ low energy
• Pion ratio lower at high energy because increased second-chance collisions

wash out charge ratio
• Attention: x-axis scales are different!
• Effect previously noted at higher energies (B.A. Li, PRC67, 017601 (2003).

NSCL RIKEN
Collision Energy Dependence
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Detector Requirements
• Current NSCL & RIKEN detectors not

designed to detect pions.

• Need ability to distinguish particles by
mass and charge state from pions to
light fragments

• Able to resolve many different
species of produced particles ⇒
useful for a wide range of
experimental programs

• Large acceptance needed for
reaction plane reconstruction

• High efficiency to distinguish pions
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Detector Requirements
• Current NSCL & RIKEN detectors not

designed to detect pions.

• Need ability to distinguish particles by
mass and charge state from pions to
light fragments

• Able to resolve many different
species of produced particles ⇒
useful for a wide range of
experimental programs

• Large acceptance needed for
reaction plane reconstruction

• High efficiency to distinguish pions

• TPC provides large acceptance
coverage of particle tracking in an
applied magnetic field
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AT-TPC Scientific Program
Table 1: Overview of AT-TPC scientific breadth. 

Measurement Physics Beam 

Examples 

Beam 

Energy 

Min Beam 

Intensity 

Transfer Reactions Nuclear Structure 
32

Mg(d,p)
33

Mg 3 (A MeV) 100 (pps) 

Resonant Reactions Nuclear Structure 
26

Ne(p,p)
26

Ne 3  100  

Astrophysical Reactions Nucleosynthesis 
25

Al(
3
He,d)

26
Si 3  100  

Fission Barriers Nuclear Structure 
199

Tl, 
192

Pt 20 - 60  10,000  

Giant Resonances Nuclear EOS, 

Nuclear Astro. 

54
Ni-

70
Ni,  

106
Sn-

127
Sn 

50 - 200  50,000  

Heavy Ion Reactions Nuclear EOS 
106

Sn - 
126

Sn, 
37

Ca - 
49

Ca 

50 - 200  50,000  

 

* GMR measurements to be made in inverse kinematics with D2 active target
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TPC Principles
• Particle Tracking:

– Active volume filled with
ionizing gas

– Charged particle creates
e- clusters

– e-’s drift in electric field to
readout plane

– Position of signal on
readout plane gives 2D
track coordinates

– Signal time of arrival
gives drift coordinate

– Connect the dots to
reconstruct particle path

 

50cm 
diameter

120cm length

e- drift

NSCL: AT-TPC

RIKEN: SAMURAI (based on EOS)
Rai et al, IEEE Trans. Nucl. Sc. 37, 56 (1990).
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TPC Advantages

 

50cm 
diameter

120cm length

e- drift

NSCL: AT-TPC

• 4π geometrical acceptance
• High resolution and efficiency

tracking
• Sufficient magnetic field to resolve

light fragments in heavy ion
reactions

• Multiplicity triggering for
intermediate energy heavy ion
reactions

• Internal triggering for low energy
particles that stop in the detector gas

• Large dynamic range for particle
detection

• Electronics that can accommodate
large data volumes and rates
Dual functionality as active target:

– Variable pressure and identity of gas
– Measure active target reactions with

beam intensities down to 100pps

RIKEN: SAMURAI (based on EOS)
Rai et al, IEEE Trans. Nucl. Sc. 37, 56 (1990).
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Rai et al, IEEE Trans. Nucl. Sc. 37, 56 (1990).

Chamber Design

NSCL: AT-TPC
• Cylinder - length 120cm, radius

25cm
• Chamber designed to sustain

vacuum
• 2cm radius entrance window
• 23cm radius exit window
• Removable target wheel
• 8000pads, 0.5cm x 0.5cm

RIKEN: SAMURAI
• Box - length 150cm, width 100cm,

height 55cm
• Operates at atmospheric pressure
• Target sits outside entrance

window
• 11760pads, 1.2cm x 0.8cm
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TP-MUSIC

Neutron
Detectors

Charged
Particle TOF

Solenoid
Magnet

TPC

Magnetic Field Considerations

Solenoid
• Narrow downstream acceptance
• Poor momentum resolution at very

forward angles
• Beam trajectory centered in magnet
• Beam path independent of beam

species & energy
• Field cage can be used to mask beam

ionization

Dipole
• Wide downstream acceptance
• Good momentum resolution in

forward direction
• Beam trajectory influenced by Bfield
• Beam path dependent upon beam

species & energy
• Difficult to mask beam ionization
• Difficult to distinguish π+ from beam

Beam
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Magnetic Field

NSCL: AT-TPC
• Superconducting solenoid
• 2 Tesla Field
• Bore Dimensions:

≥ 70 cm diameter
≥ 120 cm length
≤ 125 cm beam height

• Field Non-uniformity: ≤ 10%
• Consistent with a medical MRI solenoid

RIKEN: SAMURAI
• Superconducting dipole
• 3 Tesla Field
• Gap Dimensions:

200 cm pole diameter
80 cm height

• 180deg rotating base
• 650Ton weight
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Historical Perspective

• Scale of both detectors consistent with EOS experiment
• NSCL: AT-TPC

– Pad plane design will allow improved resolution over both EOS & STAR
– Solenoid field constrains beam path to center of detector independently of beam

identity
– Increased field strength suitable for identifying high mass species
– Drift distance coupled with readout allows for <2.5mm resolution

• RIKEN: SAMURAI
– Identical to EOS with exception of reduced drift distance

Table 1: Summary of TPC experiments [EOS1990, STA2003, ALI2007, T2K2007]. 

Syste m  Pads  Pad Size (c m )  Magnet  Field (T) Drift(c m )  

EOS 15360 1.2 x 0.8 Dipole 1.3 75 

STAR 136608 0.3x1.2, 0.6x2.0 Solenoid 0.5 210 

ALICE 557568 0.6x1.0, 0.6x1.5 Solenoid 0.4 250 

T2K 124000 0.7x1.0 Dipole 0.2 500 

AT-TPC 10000 0.5x0.5 Solenoid 2.0 120 

SAMURAI 11760 1.2 x 0.8 Dipole 3.0 55 

  



May 29, 2008 Abigail Bickley, Catania, Italy 16

Solenoid

Calorimeter Beam

ToF

TPC

Beam 
Trigger

ToF

Triggering

NSCL: AT-TPC
• Beam trigger - provided by PPAC

& RF-ToF before beam enters
chamber

• Internal trigger - discriminator
incorporated in TPC electronics
to be used as a threshold trigger

• Downstream calorimeter to
measure Z of leading particle

RIKEN: SAMURAI
• Beam tracking detector
• Fast scintillator array, θ<60°
• Diamond detector as ToF start
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• Investigating opportunities to modify existing T2K electronics
chain to accommodate our requirements

• Effort being led by ACTAR working group
• Dynamic range of ADC is key due to wide range of particle

species to be simultaneously identified ∴ 12bit AFTER+ chip
will be used

• Must sustain 1kHz/chan data rate
• Internal triggering capability will accommodate active target

requirements of AT-TPC

Electronics Requirements
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Data Volume

• High collision multiplicity expected
• ~2% channels & time buckets filled
• Results in data volume of :

5 kB/s*chan
50MB/s

112Sn+112Sn, 150MeV, b=2fm

Zero suppressed
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Data Management
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Sub - Systems
• Gas Mixing System:

– Monitors & maintains chamber pressure and gas purity
– NSCL: AT-TPC

• identity and pressure of the gas used to fill the detector will be
dependent upon the experimental requirements.

• H2, D2, 3He, Ne, Ar, isobutane and P10(90% Ar + 10% CH4)

– RIKEN: SAMURAI
• P10(90% Ar + 10% CH4)

• Laser Calibration System:
– Calibration based on drift rate of laser induced ionization
– Compensates for changing environmental conditions and static

non-uniformities in the magnetic and electric fields
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Principles of Particle Identification
• Energy deposition and

radius of curvature of each
particle species is unique

• Allows identification of
particle species and charge
state

• Dynamic range sufficient to
simultaneously measure
pions → light isotopes

π+

p
d

t

3He

4He

6Li 7Li

Simulation w/ STAR resolution, scaled to EOS
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NSCL Footprint
Future

Reaccelerator area
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RIKEN Footprint
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Timeline & Funding
NSCL: AT-TPC

• Proposals submitted to both
NSF and DOE

• Total budget: $1-2M
• 2008 - Prototype testing,

Mechanical Design
• 2009 - Electronics, Magnet,

Laser System, Gas Mixing
• 2010 - System

Commissioning
• 2011 - First experiments

RIKEN: SAMURAI
• Magnet and supporting

subsystems included in
SAMURAI budget

• Proposal submitted to DOE
for chamber construction at
NSCL

• Chamber budget - $800k
• 2010 - Chamber

construction begins
• 2011 - Dipole completed
• 2013 - First experiments
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Collaboration
NSCL: AT-TPC

• LBNL - Lee, Phair
• University Notre Dame - Garg
• NSCL - Bickley*, Lynch, Mittig,

Westfall
• Western Michigan University -

Famiano

RIKEN: SAMURAI
• Daresbury Laboratory - Lemmon
• GANIL - Chbihi
• GSI - Lukasik, Stoecker, Trautman
• Kyoto Univ. - Murakami*
• LNS-INFN - Colona, Di Toro, Verde
• NSCL - Bickley, Brown, Danielewicz,

Lynch, Tsang, Westfall
• Riken - Nakai, Nishimura, Sakurai
• Rikkyo University - Ieki, Murata
• SUBATECH - Hartnack
• Smith College - Pfabe
• Texas A&M University - Yennello
• Texas A&M University Commerce - Li
• Tohoku University - Ono
• Western Michigan Univ. - Famiano
• Universidade Federal do Rio Grande do

Sul - Souza
• Universidade Federal do Rio de Janeiro

Cidade Universit´aria  - Donangelo
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