
Guides, Unit tests, Object orientation and
Parallel programming using MPI and OpenMP

Morten Hjorth-Jensen

Michigan State University, Michigan, U.S.A. and
University of Oslo, Oslo, Norway

Nuclear Talent course on DFT, July and August 2014, ECT*

1 / 136

Version control with Git, recommended

Git is an open source version control software, that makes it possible to have ”versions”
of a project. That is, snapshots of the files in the project at certain points in time. By
having different versions of a project, it is possible to see the changes that have been
made to the code over time, and it is also possible to revert the project to another
version. It should mentioned that when files remain unchanged from one version to
another, Git simply links to the previous files, making everything fast and clean.

2 / 136

Qt creator for C++ programmers

Qt is a cross-platform ide and is part of the Qt Project. It consist of a number of
features with the aim to increase the productivity of the developer and to help
organizing large projects. Some of the features included in its editor are:

I rapid code navigation tools,

I syntax highlighting and code completion,

I static code checking and style hints as you type,

I context sensitive help,

I code folding.

3 / 136

Qt creator for C++ programmers

Qt includes a debugger plugin, providing a simplified representation of the raw
information provided by the external native debuggers to debug the C++ language.
Some of the possibilities in debugging mode are:

I interrupt program execution,

I step through the program line-by-line or instruction-by-instruction,

I set breakpoints,

I examine call stack contents, watchers, and local and global variables.

Qt also provides useful code analysis tools for detecting memory leaks and profiling
function execution. For more details see the online resources on Qt.

4 / 136

Armadillo for C++ programmers
arma is an open source C++ linear algebra library, with the aim to provide an intuitive
interface combined with efficient calculations. Its functionalities includes efficient
classes for vectors, matrices and cubes, as well as many functions which operate on
the classes. Some of the functionalities of armadillo are demonstrated in the example
below:

vec x (10) ; / / column vec to r o f
leng th 10

rowvec y = zeros<rowvec>(10) ; / / row vec to r o f
leng th 10

mat A = randu<mat>(10 ,10) ; / / random mat r i x o f
dimension 10 X 10

rowvec z = A. row (5) ; / / e x t r a c t a row
vec to r

cube q (4 ,5 ,6) ; / / cube of dimension
4 X 5 X 6

mat B = q . s l i c e (1) ; / / e x t r a c t a s l i c e
from the cube

/ / (each s l i c e i s a
mat r i x)

5 / 136

Armadillo
One very useful class in armadillo is field, where arbitrary objects in matrix-like or
cube-like layouts can be stored. Each of these objects can have an arbitrary size. Here
is an example of the usage of the field class:

f i e l d <vec> F(3 ,2) ; / / a f i e l d o f dimension 3
X 2 con ta in ing vec to rs

/ / each vec to r i n the f i e l d can have an a r b i t r a r y
s ize

F(0 ,0) = vec (5) ;
F (1 ,1) = randu<vec>(6) ;
F (2 ,0) . s e t s i z e (7) ;

double x = F(2 ,0) (1) ; / / access element 1 o f
vec to r s tored at 2 ,0

F . row (0) = F . row (2) ; / / copy a row of vec to rs
f i e l d <vec> G = F . row (1) ; / / e x t r a c t a row of

vec to rs from F

6 / 136

IPython Notebook
IPython Notebook is a web-based interactive computational environment for python
where code execution, text, mathematics, plots and rich media can be combined into a
single document. Some of the main features of ipynb are:

I In-browser editing for code, with automatic syntax highlighting, indentation, and
tab completion/introspection.

I The ability to execute code from the browser, with the results of computations
attached to the code which generated them.

I Displaying the result of computation using rich media representations, such as
HTML, LaTeX, PNG, SVG, etc.

I In-browser editing for rich text using the Markdown markup language, which can
provide commentary for the code.

I The ability to easily include mathematical notation within markdown cells using
LaTeX, and rendered natively by MathJax.

One very nice of feature of IPython Notebook documents is that they can be shared via
the nbviewer, as long as they are publicly available. This service renders the notebook
document, specified by an url, as a static web page. This makes it easy to share a
document with other users that can read the document immediately without having to
install anything.

7 / 136

SymPy

SymPy is a python library for doing symbolic math, including features such as basic

symbolic arithmetic, simplification and other methods of rewriting, algebra,

differentiation and integration, discrete mathematics and even quantum physics.

SymPy is also able to format the result of the computations as LaTeX, ASCII, Fortran,

C++ and python code. Some of the named features of SymPy are shown on the next

slide.

8 / 136

SymPy

>>> from sympy import ∗
>>> x = Symbol (’x’)
>>> y = Symbol (’y’)
>>> x+y+x−y
2∗x
>>> s i m p l i f y ((x+x∗y) / x)
1 + y
>>> se r i es (cos (x) , x)
1 − x ∗∗2/2 + x∗∗4/24 + O(x ∗∗6)
>>> d i f f (s in (x) , x)
cos (x)
>>> i n t e g r a t e (log (x) , x)
−x + x∗ log (x)
>>> solve ([x + 5∗y − 2 , −3∗x + 6∗y − 15] , [x , y])
{y : 1 , x : −3}

9 / 136

Hierarchical Data Format 5 (hdf5)

hdf5 is a library and binary file format for storing and organizing large amounts of
numerical data, and is supported by many software platforms including Fortran, C++
and python. The core concepts in hdf5 are datasets, groups and attributes. Datasets
are array-like collections of data which can be of any size and dimension, groups are
folder-like collections consisting of datasets and other groups, and attributes are
metadata associated with a group or dataset, stored right next to the data it describes.
This limited primary structure makes the file design simple, but provides at the same
time a very structured way to store data. Here is a short list of advantages of the hdf5
format:

I open-source software,

I different data types (images, tables, arrays, etc.) can be combined in one single
file,

I support for user-defined data types,

I data can be accessed independently of the platform that generated the data,

I possible to read only part of the data, not the whole file,

I source code examples for reading and writing in this format is widely available.

10 / 136

Unit Testing

Unit Testing is the practice of testing the smallest testable parts, called units, of an
application individually and independently to determine if they behave exactly as
expected. Unit tests (short code fragments) are usually written such that they can be
preformed at any time during the development to continually verify the behavior of the
code. In this way, possible bugs will be identified early in the development cycle,
making the debugging at later stage much easier. There are many benefits associated
with Unit Testing, such as

I It increases confidence in changing and maintaining code. Big changes can be
made to the code quickly, since the tests will ensure that everything still is
working properly.

I Since the code needs to be modular to make Unit Testing possible, the code will
be easier to reuse. This improves the code design.

I Debugging is easier, since when a test fails, only the latest changes need to be
debugged.

I Different parts of a project can be tested without the need to wait for the other
parts to be available.

I A unit test can serve as a documentation on the functionality of a unit of the code.

11 / 136

Object orientation, Fortran and C++

Why object orientation?

I Three main topics: objects, class hierarchies and polymorphism

I The aim here is to be to be able to write a more general code which can easily
be tailored to new situations.

I Polymorphism is a term used in software development to describe a variety of
techniques employed by programmers to create flexible and reusable software
components. The term is Greek and it loosely translates to ”many forms”.

Strategy: try to single out the variables needed to describe a given system and those

needed to describe a given solver.

12 / 136

Object orientation, Fortran and C++

In programming languages, a polymorphic object is an entity, such as a variable or a
procedure, that can hold or operate on values of differing types during the program’s
execution. Because a polymorphic object can operate on a variety of values and types,
it can also be used in a variety of programs, sometimes with little or no change by the
programmer. The idea of write once, run many, also known as code reusability, is an
important characteristic to the programming paradigm known as Object-Oriented
Programming (OOP).
OOP describes an approach to programming where a program is viewed as a
collection of interacting, but mostly independent software components. These software
components are known as objects in OOP and they are typically implemented in a
programming language as an entity that encapsulates both data and procedures.

13 / 136

Object orientation, Fortran and C++

A Fortran 90/95 module can be viewed as an object because it can encapsulate both
data and procedures. Fortran 2003 (F2003 and now F2008) added the ability for a
derived type to encapsulate procedures in addition to data. By definition, a derived
type can now be viewed as an object as well in F2008.

F2008 also introduced type extension to its derived types. This feature allows F2008

programmers to take advantage of one of the more powerful OOP features known as

inheritance. Inheritance allows code reusability through an implied inheritance link in

which leaf objects, known as children, reuse components from their parent and

ancestor objects.

14 / 136

Object orientation in C++
A class is a collection of variables and functions. By defining a class one determines
what type of data and which kind of operations that can be preformed on these data.
The variables and functions in a class are called class members. As an example, we
consider the definition of a class for gaussian type orbitals:

class Primit iveGTO
{
public :

Primit iveGTO () ;
˜ Primit iveGTO () ;
const double &exponent () const ;
void setExponent (const double &exponent) ;

const double &weight () const ;
void setWeight (const double &weight) ;
. . .

private :
double m exponent ;
double m weight ;
. . .

} ;
15 / 136

Object orientation in C++

A class definition starts with the keyword class followed by the name of the class. The

class body contains member variables and functions, in this example m exponent,

m weight. The keywords public and private are access modifiers and set the

accessibility of member variables and member functions. A public member can be

assessed anywhere outside the class, while a private member only can be accessed

within the current class.

16 / 136

Object orientation in C++

An instance of a class is called object. That is, a self-contained component that consist
of both data and methods to manipulate the data. A PrimitiveGTO object can be
declared by

Primit iveGTO pGTO() ; / / or as a p o i n t e r
Primit iveGTO∗ pGTO = new Primit iveGTO () ;

Declaration of an object calls the constructor function PrimitiveGTO()) in a class,

which initialize the new object. The constructor can have input parameters, used to

assign values to member variables. To delete an object the destructor function

(˜PrimitiveGTO()) is called.

17 / 136

Object orientation in C++

In object-oriented programming, objects can inherit properties and methods from

existing classes. Inheritance provides the opportunity to reuse existing code. A class

that is defined in terms of another class, is called a subclass or derived class, while the

class used as the basis for inheritance is called a superclass or base class. The terms

child class and parent class are also common to use for the subclass and superclass,

respectively. An example of inheritance is shown below, where the class RHF is

derived from the base class HFsolver:

18 / 136

Object orientation in C++

class HFsolver
{
public :

HFsolver (Elect ron icSystem ∗system) ;

v i r t u a l void so lveS ing le () = 0 ;
v i r t u a l void ca lcu la teEnergy () = 0 ;
. . .

protected :
i n t m nElectrons ;
. . .

} ;

19 / 136

Object orientation in C++

class RHF : public HFsolver
{
public :

RHF(Elect ron icSystem ∗system) ;

void so lveS ing le () ;
void ca lcu la teEnergy () ;
. . .

} ;

When an object of class RHF is declared, it inherits all the members of HFsolver

beside the private members of HFsolver. Note the special declaration of the functions

in the HFsolver class. These functions are virtual functions whose behavior can be

overridden in a derived class, allowing efficient implementation of new solvers.

20 / 136

Object orientation, Fortran

Example

type shape
integer : : co l o r
log ica l : : f i l l e d
integer : : x
integer : : y

end type shape
type , EXTENDS (shape) : : rec tang le

integer : : l eng th
integer : : w id th

end type rec tang le
type , EXTENDS (rec tang le) : : square
end type square

21 / 136

Object orientation, Fortran

We have a square type that inherits components from rectangle which inherits

components from shape. The programmer indicates the inheritance relationship with

the EXTENDS keyword followed by the name of the parent type in parentheses. A type

that EXTENDS another type is known as a type extension (e.g., rectangle is a type

extension of shape, square is a type extension of rectangle and shape). A type without

any EXTENDS keyword is known as a base type (e.g., shape is a base type).

22 / 136

Object orientation, Fortran
A type extension inherits all of the components of its parent (and ancestor) types. A
type extension can also define additional components as well. For example, rectangle
has a length and width component in addition to the color, filled, x, and y components
that were inherited from shape. The square type, on the other hand, inherits all of the
components from rectangle and shape, but does not define any components specific to
square objects. Below is an example on how we may access the color component of
square:

type (square) : : sq ! dec lare sq as a
square ob jec t

sq%co lo r ! access co lo r
component f o r sq

sq%rec tang le%co lo r ! access co lo r
component f o r sq

sq%reac tang le%shape%co lo r ! access co lo r
component f o r sq

All these declarations are equivalent. A type extension includes an implicit component

with the same name and type as its parent type. This can come in handy when the

programmer wants to operate on components specific to a parent type. It also helps

illustrate an important relationship between the child and parent types.

23 / 136

Object orientation, Polymorphism in Fortran

The CLASS keyword allows F2008 programmers to create polymorphic variables. A
polymorphic variable is a variable whose data type is dynamic at runtime. It must be a
pointer variable, allocatable variable, or a dummy argument. Below is an example:

class (shape) , pointer : : sh

In the example above, the sh object can be a pointer to a shape or any of its type
extensions. So, it can be a pointer to a shape, a rectangle, a square, or any future type
extension of shape. As long as the type of the pointer target ”is a” shape, sh can point
to it.

There are two basic types of polymorphism: procedure polymorphism and data

polymorphism. Procedure polymorphism deals with procedures that can operate on a

variety of data types and values. Data polymorphism deals with program variables that

can store and operate on a variety of data types and values.

24 / 136

Object orientation, Polymorphism in Fortran

Procedure polymorphism occurs when a procedure, such as a function or a subroutine,
can take a variety of data types as arguments. This is accomplished in F2008 when a
procedure has one or more dummy arguments declared with the CLASS keyword. For
example,

subroutine setCo lor (sh , co l o r)
class (shape) : : sh
integer : : co l o r
sh%co lo r = co lo r
end subroutine setCo lor

The setColor subroutine takes two arguments, sh and color. The sh dummy argument

is polymorphic, based on the usage of class(shape). The subroutine can operate on

objects that satisfy the ”is a” shape relationship. So, setColor can be called with a

shape, rectangle, square, or any future type extension of shape

25 / 136

Object orientation, Polymorphism in Fortran

However, by default, only those components found in the declared type of an object are
accessible. For example, shape is the declared type of sh. Therefore, you can only
access the shape components, by default, for sh in setColor, that is

sh%color , sh%f i l l e d , sh%x , sh%y

If the programmer needs to access the components of the dynamic type of an object

then they can use the F2008 SELECT TYPE construct.

26 / 136

Object orientation, Polymorphism in Fortran
The following example illustrates how a SELECT TYPE construct can access the
components of a dynamic type of an object:

subroutine i n i t i a l i z e (sh , co lo r , f i l l e d , x , y ,
length , width)

! i n i t i a l i z e shape ob jec ts
class (shape) : : sh
integer : : co l o r
log ica l : : f i l l e d
integer : : x
integer : : y
integer , optional : : l eng th
integer , optional : : w id th

sh%co lo r = co lo r
sh%f i l l e d = f i l l e d
sh%x = x
sh%y = y

27 / 136

Object orientation, Polymorphism in Fortran
select type (sh)
type i s (shape)

! no f u r t h e r i n i t i a l i z a t i o n requ i red
class i s (rec tang le)

! rec tang le or square s p e c i f i c i n i t i a l i z a t i o n s
i f (present (leng th)) then

sh%leng th = leng th
else

sh%leng th = 0
endif
i f (present (width)) then

sh%width = width
else

sh%width = 0
endif

class defaul t
! g ive e r r o r f o r unexpected / unsupported type

stop ’initialize: unexpected type for sh
object!’

end select
28 / 136

Object orientation, Polymorphism in Fortran

The above example illustrates an initialization procedure for our shape example. It

takes one shape argument, sh, and a set of initial values for the components of sh. Two

optional arguments, length and width, are specified when we want to initialize a

rectangle or a square object. The SELECT TYPE construct allows us to perform a type

check on an object. There are two styles of type checks that we can perform. The first

type check is called ”type is”. This type test is satisfied if the dynamic type of the object

is the same as the type specified in parentheses following the ”type is” keyword. The

second type check is called ”class is”. This type test is satisfied if the dynamic type of

the object is the same or an extension of the specified type in parentheses following

the ”class is” keyword.

29 / 136

Object orientation, Polymorphism in Fortran

Derived types in F2008 are considered objects because they now can encapsulate
data as well as procedures. Procedures encapsulated in a derived type are called
type-bound procedures. The example below illustrates how we may add a type-bound
procedure to shape:

type shape
integer : : co l o r
log ica l : : f i l l e d
integer : : x
integer : : y

contains
procedure : : i n i t i a l i z e

end type shape

30 / 136

Object orientation, Polymorphism in Fortran

Most OOP languages allow a child object to override a procedure inherited from its
parent object. This is known as procedure overriding. In F2008, we can specify a
type-bound procedure in a child type that has the same binding-name as a type-bound
procedure in the parent type. When the child overrides a particular type-bound
procedure, the version defined in its derived type will get invoked instead of the version
defined in the parent. Below is an example where rectangle defines an initialize
type-bound procedure that overrides shape’s initialize type-bound procedure:

31 / 136

Object orientation, Polymorphism in Fortran

module shape mod
type shape

integer : : co l o r
log ica l : : f i l l e d
integer : : x
integer : : y

contains
procedure : : i n i t i a l i z e => i n i tShape

end type shape
type , EXTENDS (shape) : : rec tang le

integer : : l eng th
integer : : w id th

contains
procedure : : i n i t i a l i z e => i n i t R e c t a n g l e

end type rec tang le
type , EXTENDS (rec tang le) : : square
end type square

32 / 136

Object orientation, Polymorphism in Fortran

contains
subroutine i n i tShape (this , co lo r , f i l l e d , x , y ,

length , width)
! i n i t i a l i z e shape ob jec ts
class (shape) : : th is
integer : : co l o r
log ica l : : f i l l e d
integer : : x
integer : : y
integer , optional : : l eng th ! ingnored f o r shape
integer , optional : : w id th ! ignored f o r shape

th is%co lo r = co lo r
th is%f i l l e d = f i l l e d
th is%x = x
th is%y = y
end subroutine

33 / 136

Object orientation, Polymorphism in Fortran

subroutine i n i t R e c t a n g l e (this , co lo r , f i l l e d , x , y ,
length , width)

! i n i t i a l i z e rec tang le ob jec ts
class (rec tang le) : : th is
integer : : co l o r
log ica l : : f i l l e d
integer : : x
integer : : y
integer , optional : : l eng th
integer , optional : : w id th

th is%co lo r = co lo r
th is%f i l l e d = f i l l e d
th is%x = x
th is%y = y

34 / 136

Object orientation, Polymorphism in Fortran
Continues

i f (present (leng th)) then
th is%length = leng th

else
th is%length = 0

endif
i f (present (width)) then

th is%width = width
else

th is%width = 0
endif
end subroutine
end module

In the sample code above, we defined a type-bound procedure called initialize for both

shape and rectangle. The only difference is that shape’s version of initialize will invoke

a procedure called initShape and rectangle’s version will invoke a procedure called

initRectangle.

35 / 136

Object orientation, Polymorphism in Fortran
Note that the passed-object dummy in initShape is declared ”class(shape)” and the
passed-object dummy in initRectangle is declared ”class(rectangle)”. A type-bound
procedure’s passed-object dummy must match the type of the derived type that defined
it. Other than differing passed-object dummy arguments, the interface for the child’s
overriding type-bound procedure is identical with the interface for the parent’s
type-bound procedure. That is because both type-bound procedures are invoked in the
same manner:

type (shape) : : shp
! dec lare an

ins tance of shape
type (rec tang le) : : r e c t

! dec lare an
ins tance of rec tang le

type (square) : : sq
! dec lare an

ins tance of square
c a l l shp%i n i t i a l i z e (1 , . true . , 10 , 20)

! c a l l s in i tShape
c a l l r e c t%i n i t i a l i z e (2 , . fa lse . , 100 , 200 , 11 , 22)

! c a l l s i n i t R e c t a n g l e
c a l l sq%i n i t i a l i z e (3 , . fa lse . , 400 , 500)

! c a l l s i n i t R e c t a n g l e 36 / 136

Object orientation, Polymorphism in Fortran

Note that sq is declared square but its initialize type-bound procedure invokes
initRectangle because sq inherits the rectangle version of initialize.
Although a type may override a type-bound procedure, it is still possible to invoke the
version defined by a parent type. Each type extension contains an implicit parent object
of the same name and type as the parent. We can use this implicit parent object to
access components specific to a parent, say, a parent’s version of a type-bound
procedure:

c a l l r e c t%shape%i n i t i a l i z e (2 , . fa lse . , 100 , 200)
! c a l l s in i tShape

c a l l sq%rec tang le%shape%i n i t i a l i z e (3 , . fa lse . , 400 ,
500) ! c a l l s in i tShape

37 / 136

Object orientation, Polymorphism in Fortran

A quantum-mechanical example

MODULE s i n g l e p a r t i c l e d a t a
USE constants
USE i n i f i l e
USE setupsystem
IMPLICIT NONE
PRIVATE

TYPE , PUBLIC : : c o n f i g u r a t i o n d e s c r i p t o r
INTEGER : : numberconfs
INTEGER , DIMENSION (:) , POINTER : : con f i g

END TYPE c o n f i g u r a t i o n d e s c r i p t o r

38 / 136

Object orientation, Polymorphism in Fortran
A quantum-mechanical example

! This i s the basis type used , and conta ins a l l
quantum numbers necessary

! f o r fermions i n one dimension
TYPE , PUBLIC : : SpQuantumNumbers

! n i s the p r i n c i p a l quantum number taken as
number o f nodes−1

! s i s the sp in and ms i s the sp in
p ro j ec t i on , and p a r i t y i s obvious

INTEGER : : ndata
INTEGER , DIMENSION (:) , POINTER : : n , s , ms,

p a r i t y => n u l l ()
CHARACTER(LEN=100) , DIMENSION (:) , POINTER : :

o r b i t s t a t u s , model space => n u l l ()
REAL(DP) , DIMENSION (:) , POINTER : : masses ,

energy => n u l l ()
CONTAINS

PROCEDURE : : i n i t i a l i z e => i n i t 1 d i m
PROCEDURE : : output => output1dim
PROCEDURE : : countcon f igs =>

countconf igs1dim
PROCEDURE : : se tupconf igs =>

setupconf igs1dim
END TYPE SpQuantumNumbers

39 / 136

Object orientation, Polymorphism in Fortran

! We add then quantum numbers approp r ia te f o r
two−dimensional systems ,

! s u i t a b l e f o r e lec t rons i n quantum dots f o r
example

! Use as TYPE(TwoDim) : : qde lec t rons
! n => qde lec t rons%n
TYPE , EXTENDS(SpQuantumNumbers) , PUBLIC : :

TwoDim
INTEGER , DIMENSION (:) , POINTER : : ml => n u l l

()
CONTAINS

PROCEDURE : : i n i t i a l i z e => i n i t 2 d i m
PROCEDURE : : output => output2dim
PROCEDURE : : countcon f igs =>

countconf igs2dim
PROCEDURE : : se tupconf igs =>

setupconf igs2dim
END TYPE TwoDim

40 / 136

Object orientation, Polymorphism in Fortran

! Then we extend to three dimensions , s u i t a b l e
f o r atoms and e lec t rons i n

! 3d t raps
! Use as TYPE(ThreeDim) : : e l ec t rons
! n => e lec t rons%n
TYPE , EXTENDS(TwoDim) , PUBLIC : : ThreeDim

INTEGER , DIMENSION (:) , POINTER : : l , j , mj =>
n u l l ()

CONTAINS
PROCEDURE : : i n i t i a l i z e => i n i t 3 d i m
PROCEDURE : : output => output3dim
PROCEDURE : : countcon f igs =>

countconf igs3dim
PROCEDURE : : se tupconf igs =>

setupconf igs3dim
END TYPE ThreeDim

41 / 136

Object orientation, Polymorphism in Fortran

! Then we extends to nucleons (protons and
neutrons) , note t h a t the masses are i n

! SpQuantumNumbers . We add i sosp in and i t s
p r o j e c t i o n s

! Use as TYPE(nucleons) : : protons
! n => protons%n
TYPE , EXTENDS(ThreeDim) , PUBLIC : : nucleons

INTEGER , DIMENSION (:) , POINTER : : t , t z =>
n u l l ()

CONTAINS
PROCEDURE : : i n i t i a l i z e => i n i t n u c l e o n s
PROCEDURE : : output => outputnucleons
PROCEDURE : : countcon f igs =>

countconf igsnuc leons
PROCEDURE : : se tupconf igs =>

setupconf igsnuc leons

END TYPE nucleons

42 / 136

Object orientation, Polymorphism in Fortran

! F i n a l l y we a l low f o r s tud ies o f hypernuc le i ,
adding strangeness

! Use as TYPE(hyperons) : : sigma
! n => sigma%n ; s => sigma%strange
TYPE , EXTENDS(nucleons) , PUBLIC : : hyperons

INTEGER , DIMENSION (:) , POINTER : : s t range =>
n u l l ()

CONTAINS
PROCEDURE : : i n i t i a l i z e => i n i t h ype ro ns
PROCEDURE : : output => outputhyperons
PROCEDURE : : countcon f igs =>

countconf igshyperons
PROCEDURE : : se tupconf igs =>

setupconf igshyperons
END TYPE hyperons

43 / 136

Object orientation, Polymorphism in Fortran

Initializing data

CONTAINS
SUBROUTINE i n i t 1 d i m (th is)

CLASS(SpQuantumNumbers) : : th is
INTEGER : : i
ALLOCATE(th is%n (th is%ndata) , th is%s (th is%

ndata))
ALLOCATE(th is%ms(th is%ndata) , th is%p a r i t y (

th is%ndata))
ALLOCATE(th is%o r b i t s t a t u s (th is%ndata) , th is

%model space (th is%ndata))
ALLOCATE(th is%energy (th is%ndata) , th is%

masses (th is%ndata))

44 / 136

Object orientation, Polymorphism in Fortran

Initializing data, continues

DO i = 1 , th is%ndata
th is%model space (i) = ’ ’ ; th is%o r b i t s t a t u s (i

) = ’ ’
th is%energy (i) =0.0 dp ; th is%masses (i) =0.0 dp
th is%n (i) =0; th is%ms(i) =0; th is%s (i) =0
th is%p a r i t y (i) =0

ENDDO
END SUBROUTINE i n i t 1 d i m

45 / 136

Object orientation, Polymorphism in Fortran

An example of an output file

SUBROUTINE outputnucleons (this , o u t u n i t)
CLASS(nucleons) : : th is
INTEGER : : i , o u t u n i t
DO i = 1 , th is%ndata

WRITE(o u t u n i t ,’(6I12,2X,2E16.8,2X,2A12)’)
th is%n (i) , th is%mj (i) , th is%l (i) , th is%j (
i) , th is%t (i) , &

th is%t z (i) , th is%energy (i) , th is%masses (i) ,
th is%model space (i) , &

th is%o r b i t s t a t u s (i)
ENDDO

END SUBROUTINE outputnucleons

46 / 136

Object orientation, Polymorphism in Fortran

Simple usage

PROGRAM obd main
USE constants
USE i n i f i l e
USE s i n g l e p a r t i c l e d a t a

CLASS (nucleons) , POINTER : : neutrons => NULL ()
CALL neutrons%i n i t i a l i z e ()
CALL neutrons%output (6)

END PROGRAM obd main

47 / 136

Target group and miscellania

I You have some experience in programming but have never
tried to parallelize your codes

I Here I will base my examples on C/C++ and Fortran using
Message Passing Interface (MPI) and OpenMP.

I Good text: Karniadakis and Kirby, Parallel Scientific
Computing in C++ and MPI, Cambridge.

48 / 136

Strategies

I Develop codes locally, run with some few processes and
test your codes. Do benchmarking, timing and so forth on
local nodes, for example your laptop or PC. You can install
MPICH2 on your laptop/PC.

I Test by typing which mpd
I When you are convinced that your codes run correctly, you

start your production runs on available supercomputers, in
our case titan.uio.no.

49 / 136

How do I run MPI on a PC/Laptop? (Ubuntu/linux
setup here)

I Compile with mpicxx or mpic++ or mpif90
I Set up collaboration between processes and run

mpd −−ncpus=4 &
run code wi th
mpiexec −n 4 . / nameofprog

Here we declare that we will use 4 processes via the
−ncpus option and via −n4 when running.

I End with

mpda l l ex i t

50 / 136

Can I do it on my own PC/laptop?

Of course:
I go to http:
//www.mcs.anl.gov/research/projects/mpich2/

I follow the instructions and install it on your own PC/laptop
I Versions for Ubuntu/Linux, windows and mac
I For windows, you may think of installing WUBI
I And for mac, parallels is a good software, vmware as well.

51 / 136

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/

What is Message Passing Interface (MPI)?

MPI is a library, not a language. It specifies the names, calling
sequences and results of functions or subroutines to be called
from C/C++ or Fortran programs, and the classes and methods
that make up the MPI C++ library. The programs that users
write in Fortran, C or C++ are compiled with ordinary compilers
and linked with the MPI library.
MPI programs should be able to run on all possible machines
and run all MPI implementetations without change.
An MPI computation is a collection of processes
communicating with messages.

52 / 136

Going Parallel with MPI

Task parallelism: the work of a global problem can be divided
into a number of independent tasks, which rarely need to
synchronize. Monte Carlo simulations or numerical integration
are examples of this.
MPI is a message-passing library where all the routines have
corresponding C/C++-binding

MPI Command name

and Fortran-binding (routine names are in uppercase, but can
also be in lower case)

MPI COMMAND NAME

53 / 136

MPI

MPI is a library specification for the message passing interface,
proposed as a standard.

I independent of hardware;
I not a language or compiler specification;
I not a specific implementation or product.

A message passing standard for portability and ease-of-use.
Designed for high performance.
Insert communication and synchronization functions where
necessary.

54 / 136

The basic ideas of parallel computing

I Pursuit of shorter computation time and larger simulation
size gives rise to parallel computing.

I Multiple processors are involved to solve a global problem.
I The essence is to divide the entire computation evenly

among collaborative processors. Divide and conquer.

55 / 136

A rough classification of hardware models

I Conventional single-processor computers can be called
SISD (single-instruction-single-data) machines.

I SIMD (single-instruction-multiple-data) machines
incorporate the idea of parallel processing, which use a
large number of process- ing units to execute the same
instruction on different data.

I Modern parallel computers are so-called MIMD
(multiple-instruction- multiple-data) machines and can
execute different instruction streams in parallel on different
data.

56 / 136

Shared memory and distributed memory

I One way of categorizing modern parallel computers is to
look at the memory configuration.

I In shared memory systems the CPUs share the same
address space. Any CPU can access any data in the
global memory.

I In distributed memory systems each CPU has its own
memory. The CPUs are connected by some network and
may exchange messages.

57 / 136

Different parallel programming paradigms

I Task parallelism the work of a global problem can be
divided into a number of independent tasks, which rarely
need to synchronize. Monte Carlo simulation is one
example. Integration is another. However this paradigm is
of limited use.

I Data parallelism use of multiple threads (e.g. one thread
per processor) to dissect loops over arrays etc. This
paradigm requires a single memory address space.
Communication and synchronization between processors
are often hidden, thus easy to program. However, the user
surrenders much control to a specialized compiler.
Examples of data parallelism are compiler-based
parallelization and OpenMP directives.

58 / 136

Different parallel programming paradigms

I Message-passing all involved processors have an
independent memory address space. The user is
responsible for partitioning the data/work of a global
problem and distributing the subproblems to the
processors. Collaboration between processors is achieved
by explicit message passing, which is used for data
transfer plus synchronization.

I This paradigm is the most general one where the user has
full control. Better parallel efficiency is usually achieved by
explicit message passing. However, message-passing
programming is more difficult.

59 / 136

SPMD

Although message-passing programming supports MIMD, it
suffices with an SPMD (single-program-multiple-data) model,
which is flexible enough for practical cases:

I Same executable for all the processors.
I Each processor works primarily with its assigned local

data.
I Progression of code is allowed to differ between

synchronization points.
I Possible to have a master/slave model. The standard

option in Monte Carlo calculations and numerical
integration.

60 / 136

Today’s situation of parallel computing

I Distributed memory is the dominant hardware
configuration. There is a large diversity in these machines,
from MPP (massively parallel processing) systems to
clusters of off-the-shelf PCs, which are very cost-effective.

I Message-passing is a mature programming paradigm and
widely accepted. It often provides an efficient match to the
hardware. It is primarily used for the distributed memory
systems, but can also be used on shared memory systems.

In these lectures we consider only message-passing for writing
parallel programs.

61 / 136

Overhead present in parallel computing

I Uneven load balance: not all the processors can perform
useful work at all time.

I Overhead of synchronization.
I Overhead of communication.
I Extra computation due to parallelization.

Due to the above overhead and that certain part of a sequential
algorithm cannot be parallelized we may not achieve an optimal
parallelization.

62 / 136

Parallelizing a sequential algorithm

I Identify the part(s) of a sequential algorithm that can be
executed in parallel. This is the difficult part,

I Distribute the global work and data among P processors.

63 / 136

Bindings to MPI routines

MPI is a message-passing library where all the routines have
corresponding C/C++-binding

MPI Command name

and Fortran-binding (routine names are in uppercase, but can
also be in lower case)

MPI COMMAND NAME

The discussion in these slides focuses on the C++ binding.

64 / 136

Communicator

I A group of MPI processes with a name (context).
I Any process is identified by its rank. The rank is only

meaningful within a particular communicator.
I By default communicator MPI COMM WORLD contains all

the MPI processes.
I Mechanism to identify subset of processes.
I Promotes modular design of parallel libraries.

65 / 136

Some of the most important MPI functions

I MPI Init - initiate an MPI computation
I MPI Finalize - terminate the MPI computation and clean up
I MPI Comm size - how many processes participate in a

given MPI communicator?
I MPI Comm rank - which one am I? (A number between 0

and size-1.)
I MPI Send - send a message to a particular process within

an MPI communicator
I MPI Recv - receive a message from a particular process

within an MPI communicator
I MPI reduce or MPI Allreduce, send and receive messages

66 / 136

The first MPI C/C++ program
Let every process write ”Hello world” (oh not this program
again!!) on the standard output.

using namespace s td ;
#include <mpi . h>
#include <iostream>
i n t main (i n t nargs , char∗ args [])
{
i n t numprocs , my rank ;
/ / MPI i n i t i a l i z a t i o n s
M P I I n i t (&nargs , &args) ;
MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &my rank) ;
cout << "Hello world, I have rank " << my rank <<

" out of "
<< numprocs << endl ;

/ / End MPI
MPI F ina l i ze () ;

67 / 136

The Fortran program

PROGRAM h e l l o
INCLUDE "mpif.h"
INTEGER : : size , my rank , i e r r

CALL MPI INIT (i e r r)
CALL MPI COMM SIZE(MPI COMM WORLD, size , i e r r)
CALL MPI COMM RANK(MPI COMM WORLD, my rank , i e r r)
WRITE (∗ , ∗)"Hello world, I’ve rank " , my rank ," out

of " , size
CALL MPI FINALIZE (i e r r)

END PROGRAM h e l l o

68 / 136

Note 1

The output to screen is not ordered since all processes are
trying to write to screen simultaneously. It is then the operating
system which opts for an ordering. If we wish to have an
organized output, starting from the first process, we may rewrite
our program as in the next example.

69 / 136

Ordered output with MPI Barrier

i n t main (i n t nargs , char∗ args [])
{

i n t numprocs , my rank , i ;
M P I I n i t (&nargs , &args) ;
MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &my rank) ;
for (i = 0 ; i < numprocs ; i ++) {}
MPI Bar r ie r (MPI COMM WORLD) ;
i f (i == my rank) {
cout << "Hello world, I have rank " << my rank <<

" out of " << numprocs << endl ;}
MPI F ina l i ze () ;

70 / 136

Note 2

Here we have used the MPI Barrier function to ensure that that
every process has completed its set of instructions in a
particular order. A barrier is a special collective operation that
does not allow the processes to continue until all processes in
the communicator (here MPI COMM WORLD) have called
MPI Barrier . The barriers make sure that all processes have
reached the same point in the code. Many of the collective
operations like MPI ALLREDUCE to be discussed later, have
the same property; viz. no process can exit the operation until
all processes have started. However, this is slightly more
time-consuming since the processes synchronize between
themselves as many times as there are processes. In the next
Hello world example we use the send and receive functions in
order to a have a synchronized action.

71 / 136

Ordered output with MPI Recv and MPI Send

.
i n t numprocs , my rank , f l a g ;
MPI Status status ;
M P I I n i t (&nargs , &args) ;
MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &my rank) ;
i f (my rank > 0)
MPI Recv (& f l ag , 1 , MPI INT , my rank−1, 100 ,

MPI COMM WORLD, &status) ;
cout << "Hello world, I have rank " << my rank <<

" out of "
<< numprocs << endl ;
i f (my rank < numprocs−1)
MPI Send (&my rank , 1 , MPI INT , my rank +1 ,

100 , MPI COMM WORLD) ;
MPI F ina l i ze () ;

72 / 136

Note 3

The basic sending of messages is given by the function
MPI SEND, which in C/C++ is defined as

i n t MPI Send (void ∗buf , i n t count ,
MPI Datatype datatype ,
i n t dest , i n t tag , MPI Comm comm) }

This single command allows the passing of any kind of variable,
even a large array, to any group of tasks. The variable buf is
the variable we wish to send while count is the number of
variables we are passing. If we are passing only a single value,
this should be 1. If we transfer an array, it is the overall size of
the array. For example, if we want to send a 10 by 10 array,
count would be 10× 10 = 100 since we are actually passing
100 values.

73 / 136

Note 4
Once you have sent a message, you must receive it on another
task. The function MPI RECV is similar to the send call.

i n t MPI Recv (void ∗buf , i n t count , MPI Datatype
datatype ,

i n t source ,
i n t tag , MPI Comm comm, MPI Status ∗

status)

The arguments that are different from those in MPI SEND are
buf which is the name of the variable where you will be storing
the received data, source which replaces the destination in the
send command. This is the return ID of the sender.
Finally, we have used MPI Status status; where one can
check if the receive was completed.
The output of this code is the same as the previous example,
but now process 0 sends a message to process 1, which
forwards it further to process 2, and so forth.

74 / 136

Integrating π

I The code example computes π using the trapezoidal rules.
I The trapezoidal rule

I =
∫ b

a
f (x)dx ≈

I

h (f (a)/2 + f (a + h) + f (a + 2h) + · · ·+ f (b − h) + fb/2) .

75 / 136

Dissection of trapezoidal rule with MPI reduce
/ / Trapezo ida l r u l e and numer ica l i n t e g r a t i o n

usign MPI , example program6 . cpp
using namespace s td ;
#include <mpi . h>
#include <iostream>

/ / Here we def ine var ious f u n c t i o n s c a l l e d by
the main program

double i n t f u n c t i o n (double) ;
double t r a p e z o i d a l r u l e (double , double , i n t ,

double (∗) (double)) ;

/ / Main f u n c t i o n begins here
i n t main (i n t nargs , char∗ args [])
{

i n t n , l oca l n , numprocs , my rank ;
double a , b , h , l oca l a , l oca l b , to ta l sum ,

local sum ;
double t i m e s t a r t , t ime end , t o t a l t i m e ;

76 / 136

Dissection of trapezoidal rule with MPI reduce

/ / MPI i n i t i a l i z a t i o n s
M P I I n i t (&nargs , &args) ;
MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &my rank) ;
t i m e s t a r t = MPI Wtime () ;
/ / Fixed values f o r a , b and n
a = 0.0 ; b = 1 . 0 ; n = 1000;
h = (b−a) / n ; / / h i s the same f o r a l l

processes
l o c a l n = n / numprocs ;
/ / make sure n > numprocs , e lse i n t e g e r d i v i s i o n

gives zero
/ / Length o f each process ’ i n t e r v a l o f
/ / i n t e g r a t i o n = l o c a l n ∗h .
l o c a l a = a + my rank∗ l o c a l n ∗h ;
l o c a l b = l o c a l a + l o c a l n ∗h ;

77 / 136

Dissection of trapezoidal rule with MPI reduce
t o ta l sum = 0 . 0 ;
loca l sum = t r a p e z o i d a l r u l e (l oca l a , l oca l b ,

l oca l n ,
& i n t f u n c t i o n) ;

MPI Reduce(& local sum , &tota l sum , 1 , MPI DOUBLE,
MPI SUM, 0 , MPI COMM WORLD) ;

t ime end = MPI Wtime () ;
t o t a l t i m e = time end−t i m e s t a r t ;
i f (my rank == 0) {

cout << "Trapezoidal rule = " << t o ta l sum <<
endl ;

cout << "Time = " << t o t a l t i m e
<< " on number of processors: " <<

numprocs << endl ;
}
/ / End MPI
MPI F ina l i ze () ;
return 0;

} / / end of main program

78 / 136

MPI reduce
Here we have used

MPI reduce (void ∗senddata , void∗ r esu l t da ta , i n t
count ,

MPI Datatype datatype , MPI Op , i n t root ,
MPI Comm comm)

The two variables senddata and resultdata are obvious, besides the fact that one
sends the address of the variable or the first element of an array. If they are arrays they
need to have the same size. The variable count represents the total dimensionality, 1
in case of just one variable, while MPI Datatype defines the type of variable which is
sent and received.
The new feature is MPI Op. It defines the type of operation we want to do. In our case,
since we are summing the rectangle contributions from every process we define
MPI Op = MPI SUM. If we have an array or matrix we can search for the largest og
smallest element by sending either MPI MAX or MPI MIN. If we want the location as
well (which array element) we simply transfer MPI MAXLOC or MPI MINOC. If we want
the product we write MPI PROD.
MPI Allreduce is defined as

MPI Al l reduce (void ∗senddata , void∗ r esu l t da ta ,
i n t count ,

MPI Datatype datatype , MPI Op , MPI Comm
comm)

79 / 136

Dissection of trapezoidal rule with MPI reduce

We use MPI reduce to collect data from each process. Note also the use of the
function MPI Wtime. The final functions are

/ / t h i s f u n c t i o n def ines the f u n c t i o n to i n t e g r a t e
double i n t f u n c t i o n (double x)
{

double value = 4 . / (1 . + x∗x) ;
return value ;

} / / end of f u n c t i o n to evaluate

80 / 136

Dissection of trapezoidal rule with MPI reduce

/ / t h i s f u n c t i o n def ines the t r a p e z o i d a l r u l e
double t r a p e z o i d a l r u l e (double a , double b , i n t n ,

double (∗ func) (double))
{

double trapez sum ;
double fa , fb , x , step ;
i n t j ;
s tep =(b−a) / ((double) n) ;
fa =(∗ func) (a) / 2 . ;
fb =(∗ func) (b) / 2 . ;
trapez sum = 0 . ;
for (j =1; j <= n−1; j ++){

x= j ∗ step+a ;
trapez sum +=(∗ func) (x) ;

}
trapez sum =(trapez sum+fb+ fa) ∗ step ;
return trapez sum ;

} / / end t r a p e z o i d a l r u l e

81 / 136

Optimization and profiling

Till now we have not paid much attention to speed and possible optimization
possibilities inherent in the various compilers. We have compiled and linked as

mpic++ -c mycode.cpp
mpic++ -o mycode.exe mycode.o

For Fortran replace with mpif90. This is what we call a flat compiler option and should
be used when we develop the code. It produces normally a very large and slow code
when translated to machine instructions. We use this option for debugging and for
establishing the correct program output because every operation is done precisely as
the user specified it.
It is instructive to look up the compiler manual for further instructions

man mpic++ > out_to_file

82 / 136

Optimization and profiling

We have additional compiler options for optimization. These may include procedure
inlining where performance may be improved, moving constants inside loops outside
the loop, identify potential parallelism, include automatic vectorization or replace a
division with a reciprocal and a multiplication if this speeds up the code.

mpic++ -O3 -c mycode.cpp
mpic++ -O3 -o mycode.exe mycode.o

This is the recommended option. But you must check that you get the same results

as previously.

83 / 136

Optimization and profiling

It is also useful to profile your program under the development stage. You would then
compile with

mpic++ -pg -O3 -c mycode.cpp
mpic++ -pg -O3 -o mycode.exe mycode.o

After you have run the code you can obtain the profiling information via

gprof mycode.exe > out_to_profile

When you have profiled properly your code, you must take out this option as it

increases your CPU expenditure. For memory tests use valgrind, see

valgrind.org. An excellent GUI is also Qt, with debugging facilities.

84 / 136

valgrind.org

Optimization and profiling

Other hints

I avoid if tests or call to functions inside loops, if possible.

I avoid multiplication with constants inside loops if possible

Bad code

for i = 1:n
a(i) = b(i) +c*d
e = g(k)

end

Better code

temp = c*d
for i = 1:n

a(i) = b(i) + temp
end
e = g(k)

85 / 136

Monte Carlo integration: Acceptance-Rejection
Method

This is a rather simple and appealing method after von Neumann. Assume that we are
looking at an interval x ∈ [a, b], this being the domain of the Probability distribution
function (PDF) p(x). Suppose also that the largest value our distribution function takes
in this interval is M, that is

p(x) ≤ M x ∈ [a, b].

Then we generate a random number x from the uniform distribution for x ∈ [a, b] and a
corresponding number s for the uniform distribution between [0,M]. If

p(x) ≥ s,

we accept the new value of x , else we generate again two new random numbers x and
s and perform the test in the latter equation again.

86 / 136

Acceptance-Rejection Method

As an example, consider the evaluation of the integral

I =
∫ 3

0
exp (x)dx .

Obviously to derive it analytically is much easier, however the integrand could pose

some more difficult challenges. The aim here is simply to show how to implent the

acceptance-rejection algorithm using MPI. The integral is the area below the curve

f (x) = exp (x). If we uniformly fill the rectangle spanned by x ∈ [0, 3] and

y ∈ [0, exp (3)], the fraction below the curve obatained from a uniform distribution, and

multiplied by the area of the rectangle, should approximate the chosen integral. It is

rather easy to implement this numerically, as shown in the following code.

87 / 136

Simple Plot of the Accept-Reject Method

88 / 136

algo: Acceptance-Rejection Method

/ / Loop over Monte Car lo t r i a l s n
i n t e g r a l = 0 . ;
for (i n t i = 1 ; i <= n ; i ++){

/ / Finds a random value f o r x i n the i n t e r v a l
[0 , 3]

x = 3∗ ran0 (&idum) ;
/ / Finds y−value between [0 , exp (3)]

y = exp (3 . 0) ∗ ran0 (&idum) ;
/ / i f the value o f y a t exp (x) i s below the curve

, we accept
i f (y < exp (x)) s = s+ 1 . 0 ;

/ / The i n t e g r a l i s area enclosed below the l i n e f
(x) =exp (x)
}

/ / Then we m u l t i p l y w i th the area of the rec tang le
and

/ / d i v i d e by the number o f cyc les
I n t e g r a l = 3.∗exp (3 .) ∗s / n

89 / 136

Acceptance-Rejection Method

Here it can be useful to split the program into subtasks
I A specific function which performs the Monte Carlo

sampling
I A function which collects all data and performs statistical

analysis and perhaps writes in parallel to file.

90 / 136

algo: Acceptance-Rejection Method

i n t main (i n t argc , char ∗argv [])
{

/ / dec l a r a t i ons
/ / MPI i n i t i a l i z a t i o n s
M P I I n i t (& argc , &argv) ;
MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &my rank) ;
double t i m e s t a r t = MPI Wtime () ;

i f (my rank == 0 && argc <= 1) {
cout << "Bad Usage: " << argv [0] <<
" read also output file on same line" << endl

;
}
i f (my rank == 0 && argc > 1) {

out f i lename=argv [1] ;
o f i l e . open (ou t f i lename) ;

}

91 / 136

algo: Acceptance-Rejection Method

/ / Perform the i n t e g r a t i o n
i n t e g r a t e (MC samples , i n t e g r a l) ;
double t ime end = MPI Wtime () ;
double t o t a l t i m e = time end−t i m e s t a r t ;
i f (my rank == 0) {

cout << "Time = " << t o t a l t i m e << " on
number of processors: " << numprocs <<
endl ;

o f i l e << s e t i o s f l a g s (ios : : showpoint | i os : :
uppercase) ;

o f i l e << setw (15) << s e t p r e c i s i o n (8) <<
i n t e g r a l << endl ;

o f i l e . close () ; / / c lose output f i l e
}

/ / End MPI
MPI F ina l i ze () ;
return 0;

} / / end of main f u n c t i o n

92 / 136

algo: Acceptance-Rejection Method

void i n t e g r a t e (i n t number cycles , double &I n t e g r a l)
{

double t o ta l number cyc les ;
double var iance , energy , e r r o r ;
double t o t a l c u m u l a t i v e , t o t a l c u m u l a t i v e 2 ,

cumulat ive , cumula t ive 2 ;
to ta l number cyc les = number cycles∗numprocs ;
/ / Do the mc sampling
cumulat ive = cumula t ive 2 = 0 . 0 ;
t o t a l c u m u l a t i v e = t o t a l c u m u l a t i v e 2 = 0 . 0 ;

93 / 136

algo: Acceptance-Rejection Method

mc sampling (number cycles , cumulat ive ,
cumula t ive 2) ;

/ / C o l l e c t data i n t o t a l averages using MPI
reduce

MPI Al l reduce (& cumulat ive , &t o t a l c u m u l a t i v e , 1 ,
MPI DOUBLE, MPI SUM, MPI COMM WORLD) ;

MPI Al l reduce (& cumulat ive 2 , &t o t a l c u m u l a t i v e 2 ,
1 , MPI DOUBLE, MPI SUM, MPI COMM WORLD) ;

I n t e g r a l = t o t a l c u m u l a t i v e / numprocs ;
var iance = t o t a l c u m u l a t i v e 2 / numprocs−I n t e g r a l ∗

I n t e g r a l ;
e r r o r = s q r t (var iance / (to ta l number cyc les −1.0)) ;

} / / end of f u n c t i o n i n t e g r a t e

94 / 136

What is OpenMP

I OpenMP provides high-level thread programming
I Multiple cooperating threads are allowed to run simultaneously

I Threads are created and destroyed dynamically in a fork-join pattern

I An OpenMP program consists of a number of parallel
regions

I Between two parallel regions there is only one master
thread

I In the beginning of a parallel region, a team of new threads
is spawned

I The newly spawned threads work simultaneously with the
master

I thread
I At the end of a parallel region, the new threads are

destroyed

95 / 136

Getting started, things to remember

I Remember the header file #include < omp.h >

I Insert compiler directives (#pragma omp... in C/C++ syntax), possibly
also some OpenMP library routines

I Compile

I For example, c++ -fopenmp code.cpp
I Execute

I Remember to assign the environment variable OMP NUM
THREADS

I It specifies the total number of threads inside a parallel
region, if not otherwise overwritten

96 / 136

General code structure

#include <omp.h>
main ()
{
int var1, var2, var3;
/* serial code */
/* ... */
/* start of a parallel region */
#pragma omp parallel private(var1, var2) shared(var3)
{
/* ... */
}
/* more serial code */
/* ... */
/* another parallel region */
#pragma omp parallel
{
/* ... */
}
}

97 / 136

Parallel region

I A parallel region is a block of code that is executed by a team of threads
I The following compiler directive creates a parallel region #pragma omp

parallel ...
I Clauses can be added at the end of the directive

I Most often used clauses:

I default(shared) or default(none)
I public(list of variables)
I private(list of variables)

98 / 136

Hello world

#include <omp.h>
#include <stdio.h>
int main (int argc, char *argv[])
{
int th_id, nthreads;
#pragma omp parallel private(th_id) shared(nthreads)
{
th_id = omp_get_thread_num();
printf("Hello World from thread %d\n", th_id);
#pragma omp barrier
if (th_id == 0) {
nthreads = omp_get_num_threads();
printf("There are %d threads\n",nthreads);
}
}
return 0;
}

99 / 136

Important OpenMP library routines

I int omp get num threads (), returns the number of threads inside a
parallel region

I int omp get thread num (), returns the a thread for each thread inside
a parallel region

I void omp set num threads (int), sets the number of threads to be used
I void omp set nested (int), turns nested parallelism on/off

100 / 136

Parallel for loop

I Inside a parallel region, the following compiler directive can be used to
parallelize a for-loop: #pragma omp for

I Clauses can be added, such as

I schedule(static, chunk size)
I schedule(dynamic, chunk size) (non-determinis
I schedule(guided, chunk size) (non-deterministic

allocation)
I schedule(runtime)
I private(list of variables)
I reduction(operator:variable)
I nowait

101 / 136

#include <omp.h>
#define CHUNKSIZE 100
#define N
1000
main ()
{
int i, chunk;
float a[N], b[N], c[N];
for (i=0; i < N; i++)
a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(dynamic,chunk)
for (i=0; i < N; i++)
c[i] = a[i] + b[i];
} /* end of parallel region */
}

102 / 136

More on Parallel for loop

I The number of loop iterations can not be non-deterministic; break,
return, exit, goto not allowed inside the for-loop

I The loop index is private to each thread

I A reduction variable is special

I During the for-loop there is a local private copy in each
thread

I At the end of the for-loop, all the local copies are combined
together by the reduction operation

I Unless the nowait clause is used, an implicit barrier synchronization will
be added at the end by the compiler

I #pragma omp parallel and #pragma omp for can be combined into
#pragma omp parallel for

103 / 136

Inner product

n−1∑
i=0

aibi

int i;
double sum = 0.;
/* allocating and initializing arrays */
/* ... */
#pragma omp parallel for default(shared) private(i)
reduction(+:sum)
for (i=0; i<N; i++)
sum += a[i]*b[i];
}

104 / 136

Different threads do different tasks independently, each section is executed
by one thread.

#pragma omp parallel
{
#pragma omp sections
{
#pragma omp section
funcA ();
#pragma omp section
funcB ();
#pragma omp section
funcC ();
}
}

105 / 136

Single execution

I #pragma omp single ...

I code executed by one thread only, no guarantee which
thread

I an implicit barrier at the end
I #pragma omp master ...

I code executed by the master thread, guaranteed
I no implicit barrier at the end

106 / 136

Coordination and synchronization

I #pragma omp barrier, synchronization, must be encountered by all
threads in a team (or none)

I #pragma omp ordered a block of codes , another form of
synchronization (in sequential order)

I #pragma omp critical a block of codes
I #pragma omp atomic single assignment statement more efficient

than #pragma omp critical

107 / 136

Data scope

I OpenMP data scope attribute clauses:

I shared
I private
I firstprivate
I lastprivate
I reduction

I Purposes:

I define how and which variables are transferred to a parallel
region (and back)

I define which variables are visible to all threads in a parallel
region, and which variables are privately allocated to each
thread

108 / 136

Some remarks

I When entering a parallel region, the private clause ensures each
thread having its own new variable instances. The new variables are
assumed to be uninitialized.

I A shared variable exists in only one memory location and all threads
can read and write to that address. It is the programmer’s responsibility
to ensure that multiple threads properly access a shared variable.

I The firstprivate clause combines the behavior of the private clause
with automatic initialization.

I The lastprivate clause combines the behavior of the private clause with
a copy back (from the last loop iteration or section) to the original
variable outside the parallel region.

109 / 136

Parallelizing nested for-loops

I Serial code

for (i=0; i<100; i++)
for (j=0; j<100; j++)
a[i][j] = b[i][j] + c[i][j]

I Parallelization

#pragma omp parallel for private(j)
for (i=0; i<100; i++)
for (j=0; j<100; j++)
a[i][j] = b[i][j] + c[i][j]

I Why not parallelize the inner loop? to save overhead of repeated thread
forks-joins

I Why must j be private? To avoid race condition among the threads

110 / 136

Nested parallelism

When a thread in a parallel region encounters another parallel construct, it
may create a new team of threads and become the master of the new team.

#pragma omp parallel num_threads(4)
{
/* */
#pragma omp parallel num_threads(2)
{
//
}
}

111 / 136

Parallel tasks

#pragma omp task
#pragma omp parallel shared(p_vec) private(i)
{
#pragma omp single
{
for (i=0; i<N; i++) {
double r = random_number();
if (p_vec[i] > r) {
#pragma omp task
do_work (p_vec[i]);
}
}
}
}

112 / 136

Common mistakes

Race condition

int nthreads;
#pragma omp parallel shared(nthreads)
{
nthreads = omp_get_num_threads();
}

Deadlock

#pragma omp parallel
{
...
#pragma omp critical
{
...
#pragma omp barrier
}
}

113 / 136

Matrix-matrix multiplication

include <cstdlib>
include <iostream>
include <cmath>
include <ctime>
include <omp.h>

using namespace std;

// Main function
int main ()
{
// brute force coding of arrays
double a[500][500];
double angle;
double b[500][500];
double c[500][500];
int i;
int j;
int k;

114 / 136

Matrix-matrix multiplication

int n = 500;
double pi = acos(-1.0);
double s;
int thread_num;
double wtime;

cout << "\n";
cout << " C++/OpenMP version\n";
cout << " Compute matrix product C = A * B.\n";

thread_num = omp_get_max_threads ();

//
// Loop 1: Evaluate A.
//
s = 1.0 / sqrt ((double) (n));

wtime = omp_get_wtime ();

115 / 136

Matrix-matrix multiplication
pragma omp parallel shared (a, b, c, n, pi, s)
private (angle, i, j, k)
{
pragma omp for
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
angle = 2.0 * pi * i * j / (double) n;
a[i][j] = s * (sin (angle) + cos (angle));

}
}

//
// Loop 2: Copy A into B.
//
pragma omp for
for (i = 0; i < n; i++)
{

for (j = 0; j < n; j++)
{
b[i][j] = a[i][j];

}
}

116 / 136

Matrix-matrix multiplication
// Loop 3: Compute C = A * B.
//

pragma omp for
for (i = 0; i < n; i++)
{

for (j = 0; j < n; j++)
{
c[i][j] = 0.0;
for (k = 0; k < n; k++)
{
c[i][j] = c[i][j] + a[i][k] * b[k][j];

}
}

}
}
wtime = omp_get_wtime () - wtime;
cout << " Elapsed seconds = " << wtime << "\n";
cout << " C(100,100) = " << c[99][99] << "\n";

//
// Terminate.
//
cout << "\n";
cout << " Normal end of execution.\n";
return 0;

117 / 136

Matrix handling, Jacobi’s method

I Parallel Jacobi Algorithm
I Different data distribution schemes
I Row-wise distribution
I Column-wise distribution
I Other alternatives not discussed here: Cyclic shifting

118 / 136

Matrix handling, Jacobi’s method

I Direct solvers such as Gauss elimination and LU
decomposition

I Iterative solvers such Basic iterative solvers, Jacobi,
Gauss-Seidel, Successive over-relaxation

I Other iterative methods such as Krylov subspace methods
with Generalized minimum residual (GMRES) and
Conjugate gradient etc

119 / 136

Matrix handling, Jacobi’s method

It is a simple method for solving

Âx = b,

where Â is a matrix and x and b are vectors. The vector x is the
unknown.
It is an iterative scheme where after k + 1 iterations we have

x(k+1) = D̂−1(b− (L̂ + Û)x(k)),

with Â = D̂ + Û + L̂ and D̂ being a diagonal matrix, Û an upper
triangular matrix and L̂ a lower triangular matrix.

120 / 136

Matrix handling, Jacobi’s method
Shared memory or distributed memory:

I Shared-memory parallelization very straightforward

I Consider distributed memory machine using MPI

Questions to answer in parallelization:

I Data distribution (data locality)

I How to distribute coefficient matrix among CPUs?

I How to distribute vector of unknowns?

I How to distribute RHS?

I Communication: What data needs to be communicated?

Want to:

I Achieve data locality

I Minimize the number of communications

I Overlap communications with computations

I Load balance

121 / 136

Row-wise distribution

I Assume dimension of
matrix n × n can be
divided by number of
CPUs P, m = n/P

I Blocks of m rows of
coefficient matrix
distributed to different
CPUs;

I Vector of unknowns
and RHS distributed
similarly

122 / 136

Data to be communicated

I Already have all
columns of matrix Â on
each CPU;

I Only part of vector x is
available on a CPU;
Cannot carry out
matrix vector
multiplication directly;

I Need to communicate
the vector x in the
computations.

123 / 136

How to Communicate Vector x?

I Gather partial vector x on each CPU to form the whole
vector; Then matrix-vector multiplication on different CPUs
proceed independently.

I Need MPI Allgather() function call All localdata are
collected in olddata.

I Simple to implement, but
I A lot of communications
I Does not scale well for a large number of processors.

MPI_Allgather(void *localdata,
int dim, void *olddata, int dim, MPI_Datatype datatype, MPI_Comm comm)

124 / 136

How to Communicate Vector x?

I Another method: Cyclic shift
I Shift partial vector x upward at each step;
I Do partial matrix-vector multiplication on each CPU at

each step;
I After P steps (P is the number of CPUs), the overall

matrix-vector multiplication is complete.
I Each CPU needs only to communicate with neighboring

CPUs
I Provides opportunities to overlap communication with

computations

125 / 136

Row-wise algo

126 / 136

Overlap Communications with Computations

Communications
I Each CPU needs to send its own partial vector x to upper

neighboring CPU;
I Each CPU needs to receive data from lower neighboring

CPU
Overlap communications with computations: Each CPU does
the following:

I Post non-blocking requests to send data to upper neighbor
to to receive data from lower neighbor; This returns
immediately

I Do partial computation with data currently available;
I Check non-blocking communication status; wait if

necessary;
I Repeat above steps

127 / 136

Column-wise distribution

I Blocks of m columns
of matrix Â are
distributed among the
different P CPUs

I Blocks of m rows of
vectors x and bare
distributed to different
CPUs

128 / 136

Data to be communicated

I Have already
coefficient matrix data
of m columns and a
block of m rows of
vector x.

I A partial Âx can be
computed on each CU
independently.

I Need communication
to get the whole Âx
using MPI Allreduce.

129 / 136

Libraries

If your needs (common in most problems) include handling of
large arrays and linear algebra problem, we do not recommend
to write your own vector-matrix or more general array handling
class. It is easy to make errors. Use libraries like Armadillo
(recommended). Use also well-tested libraries like Lapack and
Blas.

I For C++ programmers (recommended) you can use
armadillo, a great C++ library for handling arrays and doing
linear algebra.

I Armadillo provides a user friendly interface to lapack and
blas functions. Below you will find an example of using the
Blas function DGEMM for matrix-matrix multiplication.

I After having installed armadillo, compile with c++ -O3 -o
test.x test.cpp -lblas.

130 / 136

Matrix-matrix multiplication

#include <c s t d l i b>
#include <ios>
#include <iostream>
#include <armad i l lo>
using namespace std ;
using namespace arma ;

/∗Because f o r t r a n f i l e s don ’ t have any header f i l e s
,

∗we need to dec lare the f u nc t i o ns o u r s e l f . ∗ /
extern "C"
{

void dgemm (char ∗ , char ∗ , i n t ∗ , i n t ∗ , i n t ∗ ,
double ∗ ,

double ∗ , i n t ∗ , double ∗ , i n t ∗ , double ∗ ,
double ∗ , i n t ∗) ;

}

131 / 136

Matrix-matrix multiplication

i n t main (i n t argc , char∗∗ argv)
{

/ / Dimensions
i n t n = a t o i (argv [1]) ;
i n t m = n ;
i n t p = m;

/∗ Create random matr ices
∗ (note t h a t o lde r vers ions o f a rmad i l l o uses

” rand ” ins tead of ” randu ”) ∗ /
srand (t ime (NULL)) ;
mat A(n , p) ;
A . randu () ;

132 / 136

Matrix-matrix multiplication

/ / P r e t t y p r i n t , and p r e t t y save , are as easy
as the two f o l l o w i n g l i n e s .

/ / cout << A << endl ;
/ / A . save (” A . mat ” , r a w a s c i i) ;
mat A t rans = t rans (A) ;
mat B(p , m) ;
B . randu () ;
mat C(n , m) ;
/ / cout << B << endl ;
/ / B . save (” B . mat ” , r a w a s c i i) ;

133 / 136

Matrix-matrix multiplication

/ / ARMADILLO TEST
cout << "Starting armadillo multiplication\n" ;
/ / Simple w a l l c l o c k t imer i s a pa r t o f

a rmad i l l o .
w a l l c l o c k t imer ;
t imer . t i c () ;
C = A∗B;
double num sec = t imer . toc () ;
cout << "-- Finished in " << num sec << "

seconds.\n\n" ;

134 / 136

Matrix-matrix multiplication

C = zeros<mat> (n , m) ;
cout << "Starting blas multiplication.\n" ;
{

char t rans = ’N’ ;
double alpha = 1 . 0 ;
double beta = 0 . 0 ;
i n t numRowA = A. n rows ;
i n t numColA = A. n co ls ;
i n t numRowB = B. n rows ;
i n t numColB = B. n co ls ;
i n t numRowC = C. n rows ;
i n t numColC = C. n co ls ;
i n t lda = (A . n rows >= A. n co ls) ? A . n rows

: A . n co ls ;
i n t ldb = (B . n rows >= B. n co ls) ? B . n rows

: B . n co ls ;
i n t l dc = (C. n rows >= C. n co ls) ? C. n rows

: C. n co ls ;

135 / 136

Matrix-matrix multiplication, calling DGEMM

dgemm (& trans , &t rans , & numRowA, & numColB
, & numColA , &alpha ,

A . memptr () , &lda , B . memptr () , &ldb ,
&beta , C. memptr () , &ldc) ;

}

136 / 136

	Main Talk
	Useful tools for scientific computing
	Object Orientation
	Parallelization
	Getting started with MPI
	Linear Algebra
	Libraries

