
Pairing Correlations in Nuclei

1 The Seniority Scheme

We consider N particles in a single (2j + 1)-fold degenerate j-shell inter-
acting a monopole pairing force. If we place this j-shell at zero energy, the
corresponding Hamiltonian is of the form:

H = −G
∑

mm′>0

a+ma+m̃am̃′am′ = −GS+S−, (1)

with
S+ =

∑
m>0

a+ma+m̃ , S− = (S+)
+ . (2)

Here am = ajm, am̃ = (−)j−ma−m, Ω = j + 1
2
. For each of the Ω pairs of

levels (m,−m) with m > 0 we introduce the operators

s
(m)
+ = a†ma

†
m̃, (3)

s
(m)
− = am̃am, (4)

s
(m)
0 =

1

2

(
a†mam + a†m̃am̃ − 1

)
, (5)

The operators s± = sx ± isy are the raising and the lowering operators
of a fictitious angular momentum s, which we will call quasi-spin. It has
nothing to do with real spin, but group theory greatly facilitates the exact
diagonalization of the Hamiltonian.These operators have the commutation
relations of the group SU(2)

[s+, s−] = 2s0, (6)

[s0, s+] = s+, (7)

[s0, s−] = −s−, (8)

Furthermore, we can see from the definition of s
(m)
0 that it has the eigenvalues

±1
2
depending on whether the pair (m,−m) is full or empty. The vector s(m)

, therefore, has a spin of 1
2
angular momentum for 0 or 2 particles in the

j-level. If only one particle is present, all the components of s(m) are zero, so
that s(m) has spin zero in this subspace.
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The total quasi-spin vector S is defined by

S =
∑
m>0

s(m). (9)

or

S+ =
∑
m>0

s
(m)
+ =

∑
m>0

a†ma
†
m̃ =

√
Ω

2

[
a†a†

]
J=0

, (10)

S0 =
1

2

∑
m

a†mam − 1

2
Ω =

1

2
(N̂ − Ω), (11)

In particular we have for the pair

C† =
1√
Ω
S+ (12)

[
C,C†] = 1

Ω
[S−, S+] = 1− N̂

Ω
, (13)

this means: for N ≪ Ω the operators C,C† behave like bosons.
The pairing Hamiltonian (1) has the form:The Hamiltonian in the single

j-shell with a monopole force has the form

Ĥ = −GS+S− = −G
(
S2 − S2

0 + S0

)
. (14)

The eigenfunctions can be classified by the quantum numbers of the quasispin
S, S0, or S,N :

Ĥ|S,N⟩ = E|S,N⟩ (15)

with (S0 is determined by the paritcle number N)

E(S,N) = −G

(
S(S + 1)− 1

4
(N − Ω)2 +

1

2
(N − Ω)

)
. (16)

The maximal value of S is 1
2
Ω (Ω small quasispins with s = 1

2
) and the

minimal value is

S ≥ |S0| =
1

2
|Ω−N |. (17)

Instead of S we introduce the quantum numer seniority

S =
1

2
(Ω− s), s = Ω− 2S (18)
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The lowest state is given by the maximal S, i.e. by S = Ω/2, i.e. s = 0.
Steps in S by 1 correspond to

S =
Ω

2
,
Ω

2
+ 1,

Ω

2
+ 2, . . . (19)

s = 0, 2, 4, . . .

and the corresponding spectrum:

E(s,N) =
GΩ

2

(
s−N − 1

2Ω
(s(s− 2)−N(N − 2))

)
(20)

The ground state corresponds to s = 0 with the energy

E(0, N) = −GΩ
N

2

(
1− N − 2

2Ω

)
(21)

The excitation energies are independent on N :

E(s,N)− E(0, N) = GΩ
s

2

(
1− s− 2

2Ω

)
(22)

The wave function of the vacuum state is

|−⟩ = |s = 0, N = 0⟩ = |S =
Ω

2
, S0 = −Ω

2
⟩. (23)

The application of S+ leads to N = 2 or S0 = −Ω
2
. This means the exact

ground state is

|Ψ0(N)⟩ = |s = 0, N⟩ ∝ (S+)
N/2|−⟩ = (

∑
m>0

a†ma
†
m̃)

N/2|−⟩ ∝
(
C†)N/2 |−⟩

(24)
This is a highly correlated state, a condensate of S-pairs, in the limit of
Ω ≫ N , a boson condensate.

How can we write express this wave function as product state. We can
write

|Ψ0⟩ ∝ P̂N exp(ηS+)|−⟩ = P̂N
∑
n

ηn

n!
(S+)

n|−⟩ (25)

where P̂N projects onto good particle number N . The ”intrinsic function”
can be written as a product

exp(ηS+)|−⟩ = exp(η
∑
m>0

a†ma
†
m̃)|−⟩ =

∏
m>0

(1 + ηa†ma
†
m̃)|−⟩ (26)
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and after normalization as (η = v/u)

|BCS⟩ =
∏
m>0

(u+ va†ma
†
m̃)|−⟩ with u2 + v2 = 1, (27)

∝
∏
m>0

(uam − va†m̃)(uam̃ + va†m)|−⟩ =
∏
m

αm|−⟩,

where we have introduced quasiparticles

α†
m = ua†m − vam̃ (28)

α†
m̃ = ua†m̃ + vam (29)

with the Fermion communtation relations{
αm , α†

m′

}
= δmm′ , {αm , αm′} = 0 (30)

Note: In intrisic BCS-state is a product state, a quasiparticle vacuum

αm|BCS⟩ = αm

∏
m′

αm′|−⟩ = 0 for all values of m (31)

Expressed in terms of particles, we see that is a complicated linear combina-
tion and it violates particle number

|BCS⟩ =
∏
m>0

(u+ va†ma
†
m̃)|−⟩ (32)

∝
(
1 + η

∑
m>0

a†ma
†
m̃ + η2

∑
mm′>0

a†ma
†
m̃a

†
m′a

†
m̃′ + . . . ηΩa†ja

†
j−1a

†
j−2..a

†
−j+1a

†
−j

)
|−⟩

(33)

However after symmetry restauration, we obtain the exact ground state

|Ψ0⟩ ∝ P̂N |BCS⟩ (34)

So far, the parameter η (i.e. the BCS-occupation numbers u,v) are free.
Since the BCS-state violates particle number, we try to optimize is by the
requirement, that the average particle number has the proper value:

⟨BCS|N̂ |BCS⟩ = 2
∑
m>0

v2 = N (35)
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How did we get this relation? We work in the quasiparticle space and trans-
form the operator. First we invert the relations

a†m = uα†
m + vαm̃ (36)

a†m̃ = uα†
m̃ − vαm (37)

and obtain:

⟨BCS|N̂ |BCS⟩ = ⟨BCS|
∑
m>0

a†mam + a†m̃am̃|BCS⟩ (38)

= ⟨BCS|
∑
m>0

(
v2am̃a

†
m̃ + v2ama

†
m

)
|BCS⟩ =

∑
m>0

2v2 (39)

This means, that the occupations are completely determined by the particle
number

v =

√
N

2Ω
, u =

√
1− N

2Ω
(40)

The distribution of particle numbers is given by

|BCS⟩ =
2Ω∑

N ′=0

cN ′ |N ′⟩ (41)

where |N ′⟩ are normalized states with fixed particle number N . We obtain

⟨BCS|P̂N |BCS⟩ = |cN |2. (42)

The BCS-energy is given by

E
(N)
BCS = −GΩ

N

2

(
1− N

2Ω
+

N

2Ω2

)
. (43)

This expression agrees for large N up to order 1/Ω with the exact formula on
Eq. (21). Therefore, we see that the BCS ansatz is a good approximation,
well suited to treat the nuclear pairing correlations.

The uncertainty in the particle number can also be obtained as

(∆N)2 := ⟨BCS|N̂2|BCS⟩ −N2 = 4Ωu2v2 (44)

or
∆N

N
=

1√
N

√
2− N

Ω
. (45)
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2 The BCS-Model

2.1 The BCS Wave Function

The applicability of the seniority model is not limited to jN configurations.
The model can be generalized. Far away form closed shells, however, where
nuclei are deformed and the levels more or less uniformly separated, the
seniority model breaks down completely. However, the idea of the BCS-
ansatz, to take treat pairing correlations in a generalized mean field model
breaking particle number symmetry can be generalized:

This method no longer provides an exact solution of the eigenvalue prob-
lem, but like the Hartree-Fock method, it can be derived from a variational
principle with the special BCS-ansatz (Bardeen, Cooper, and Schrieffer,
1957):

|BCS⟩ =
∏
k>0

(uk + vka
+
k a

+

k̃
)|−⟩, (46)

where uk and vk represent variational parameters. The product runs only
over half the configuration space, as indicated by k > 0. For each state k > 0
there exists a “conjugate state” k̃ < 0 and the states (k, k̃) generate the
whole single-particle space.

The v2k and u2
k represent the probability that a certain pair state (k, k̃)

is or is not occupied, which has to be determined in such a way that the
corresponding energy has a minimum. They are not, however, independent,
as the norm of the state requires

u2
k + v2k = 1. (47)

In many cases, especially if the Hamiltonian is invariant under time reversal,
the conjugate state can be chosen as the time-reversed state

|k̃⟩ = T |k⟩. (48)

An example is a spherical basis:

|k⟩ = |nljm⟩, |k̃⟩ = (−)(j−m)|nlj −m⟩, m > 0. (49)

The |BCS⟩ state is a superposition of different numbers of pairs and has no
longer a sharp particle number. The product can be written as

|BCS⟩ ∝ |−⟩+
∑
k>0

vk
uk

a+k a
+

k̃
|−⟩+ 1

2

∑
k>0

vkvk′

ukuk′
a+k a

+

k̃
a+k′a

+

k̃′
|−⟩+ . . . (50)
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This is actually a great disadvantage in nuclear physics. In solid state physics,
where N ≃ 1023, the violation of particle number has no influence on any
physical quantity. In nuclei, however, the violation of the invariance corre-
sponding to the particle number in many cases give rise to serious errors. One
then has to unse improved methods to deal ith such problems (projection to
good particle number etc.)

To give an impression of the flexibility of the ansatz (46), we rewrite it in
a different way: It can be expressed by a generalized pair creation operator
(2)

A+ =
∑
k>0

vk
uk

a+k a
+

k̃
(51)

as

|BCS⟩ ∝ exp(A+)|−⟩ =
∞∑
ν=0

1

ν!
(A+)ν |−⟩. (52)

The component having the particle number N is therefore (A+)N/2. This
corresponds to the seniority zero state (s = 0) of Eq. (25).

2.2 The BCS-Equations

We assume that a many-body system is described by the Hamiltonian

Ĥ =
∑
k

ϵka
+
k ak +

1

4

∑
k1k2≷0

v̄k1k2k3k4a
+
k1
a+k2ak4ak3 . (53)

where we assume ϵk̃ = ϵk. The parameters u and v of the trial wave function
(46) are determined by variation of the energy. However, this variation is re-
stricted by the subsidiary condition that the expectation value of the particle
number has the desired value N

⟨BCS|N̂ |BCS⟩ = 2
∑
k>0

v2k = N (54)

This can be achieved by adding the term −λN̂ to the variational Hamiltonian

Ĥ ′ = Ĥ − λN̂. (55)

The Lagrange multiplier λ is fixed by the number condition (54). It is called
the chemical potential or the Fermi energy because it represents the increase
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of the energy E = ⟨BCS|Ĥ|BCS⟩ for a change in the particle number

λ =
dE

dN
. (56)

To see this, we use the fact that the expectation value of Ĥ ′ is a minimum
with respect to an arbitrary variation of the BCS wave function (46). One
special variation is a change of the parameter λ. Therefore we get

d

dλ′

{
⟨BCS(λ′)|Ĥ|BCS(λ′)⟩ − λ⟨BCS(λ′)|N̂ |BCS(λ′)⟩

}
λ=λ′

= 0. (57)

or
dE

dλ
= λ

dN

dλ
. (58)

In the following we will always use Ĥ ′ instead of Ĥ. For the calculation of
the actual energy, however, we have to remember that we have to add the
term λN at the end.

From (46) and (53), we gain for the BCS expectation value of Ĥ ′:

⟨BCS|Ĥ ′|BCS⟩ =
∑
k

(ϵk − λ)v2k +
1

2

∑
kk′>0

v̄kk̃k′k̃′ukvkuk′vk′ . (59)

Here we have neglected the term 1
2

∑
kk′

v̄kk′kk′v
2
kv

2
k′ because it contributes to the

mean field, and therefore it should be already taken into account in the single
particle energies. Since the BCS wave function is completely determined by
the parameters vk and the condition (47) the variation

δ⟨BCS|Ĥ ′|BCS⟩ = 0 (60)

yields (
∂

∂vk
+

∂uk

∂vk

∂

∂uk

)
⟨BCS|Ĥ ′|BCS⟩ = 0. (61)

After differentiating we finally obtain the set of BCS equations

2(ϵk − λ)ukvk +∆k(u
2
k − v2k) = 0, k > 0. (62)

and the gap parameters (for real matrix elements)

∆k =
∑
k′>0

v̄kk̃k′k̃′uk′vk′ . (63)
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For fixed values of ϵk − λ and ∆k, (47) and (62) yield two quadratic
equations for u2

k and v2k, respectively, having the solutions:

u2
k

v2k

}
=

1

2

(
1± ϵk − λ√

(ϵk − λ)2 +∆2
k

)
. (64)

Thus the variational principle (60) yields the set of equations (63) and (64).
Together with the particle-number condition

2
∑
k>0

v2k = N (65)

they allow the calculation of the BCS parameters uk, vk. In general, these
equations are nonlinear and have to be solved by interation.

For discussion of the properties of these equations it is often useful to
insert (64) into (63) and obtain the so-called gap equation

∆k =
1

2

∑
k′>0

v̄kk̃k′k̃′
∆k′√

(ϵk − λ)2 +∆2
k

. (66)

For all practical cases, the BCS-equations have to be solved on a computer
and the question arises of ow many levels one should include for such calcula-
tions, that is, we have to investigate which states contribute most to the sum
appearing in the gap equation (66). For this purpose, let us first consider
the gap ∆k for a state close to the Fermi level. In this case the main contri-
butions to the sum come from states in the vicinity of the Fermi level. The
reason for this is that (i) in this case the expression ∆k/(ϵk−λ)2+∆2

k)
1/2 ≃ 1

(ϵk ≃ λ), and (ii) the matrix elements v̄kk̃k′k̃′ for k
′ ≃ k (strongly overlapping

wave functions) are larger than the other matrix elements.
Conversely, if k is far from the Fermi surface, all the terms in the sum of

Eq. (66) are small. for k′ ≃ k, the overlap of the wave functions is still large,
but the factor ∆k/(ϵk−λ)2+∆2

k)
1/2 is now small because of (ϵk−λ)2 ≫ ∆2

k.
For states k′ at the Fermi surface it is just the other way around, since
the matrix elements are very small (k and k′ usually belonging to different
principal quantum numbers).

The effect of the pairing force is therefore restricted to the neighborhood
of the Fermi surface, that is, only there is ∆k different from zero. We may
now understand why it might be a valid approximation to take a constant
pairing force in the vicinity of the Fermi, socalled pairing window |ϵk−λ| < Λ.
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The restriction of the pairing to the vicinity of the Fermi level is also the
reason that neutrons and protons can be treated separately (at least for heavy
nuclei). For nuclei with A ∼ 150, the neutron excess (N − Z) ≥ 20. The
neutron and proton levels close to the Fermi energy, therefore, have very small
overlap compared to that of protons or neutrons alone. Therefore, neglecting
the proton-neutron-pairing, the total wave function may be represented as a
product of the proton and neutron functions:

|BCS⟩ =
∏
k1>0

(u
(p)
k1

+ v
(p)
k1
a
(p)†
k1

a
(p)†
k̃1

)
∏
k2>0

(u
(n)
k2

+ v
(n)
k2

a
(n)†
k2

a
(n)†
k̃2

)|−⟩. (67)

2.3 BCS for a Monopole Pairing Force

As we have seen the pure pairing force provides a very simple and powerful
model for the description of pairing properties in nuclei. It is therefore widely
used in the BCS description of nuclei. In the following, we therefore present
the most important formulae of this theory for this special case.

The Hamiltonian here has the form

Ĥ ′ =
∑
k

(ϵk − λ)a+k ak −G
∑
kk′>0

a+k a
+

k̃
a
k̃′
ak′ . (68)

with the expectation value

⟨BCS|Ĥ ′|BCS⟩ =
∑
k

(ϵk − λ)v2k −
∆2

G
. (69)

In this case the gap parameter ∆ does not depend on k:

∆ = G
Λ∑

k>0

ukvk. (70)

The v2k = ⟨BCS|a†kak|BCS⟩ are the occupation probabilities for the different
single-particle states.

Again, we see that in the limit G → 0, that is, ∆ → 0, the v2k = 1 for
occupied levels and v2k = 0 for unoccupied ones. In this case v2k is a step
function, whereas for ∆ ̸= 0 the step function is somewhat smeared out.
Due to the interaction, particles are scattered from below to avove the Fermi
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surface. This yields a partial depletion of the states below and a partial filling
of the states above the Fermi level. The gap equation takes the simple form

∆ = G

Λ∑
k>0

∆

2
√
(ϵk − λ)2 +∆2

. (71)

where the sum runs over the Λ-shell only. The gap equation always has the
trivial solution ∆ = 0, that is ukvk = 0, which for no or sufficient weak
pairing force in the only solution. However, for

1

2
G

Λ∑
k>0

1

|ϵk − λ|
> 1 (72)

there exists a second nontrivial solution ∆ > 0. This always happens if
the pairing force is sufficiently strong or if the Λ-shell is sufficiently large.
However, this sharp transition is a consequence of particle number violation
and it is somewhat smeared out in more extended theories For an infinite
system, particle number violation is neglegible, and the transition is always
sharp.

On the other hand, the gap equation can also be used to determine the
strength G of the pairing force since, and, as we have already said, ∆ can be
determined empirically from the odd-even effect. It still, however, depends
on the ”cutoff” Λ.

In realistic application one uses nowadays very often a zero range pairing
force

Vpp(r1 − r2) = −V0δ(r1 − r2), (73)

. It can be shown, that in this case one also needs a cutoff. This can be see
most easily, when we try to solve the gap equation in nuclear matter:

∆(k) =

∞∫
0

k′2dk′

2π2
v(k, k′)

∆(k′)

2
√

(ϵ(k′)− λ)2 +∆2(k′)
, (74)

For the zero range force the interaction is a constant in momentum space.
Considering that the kinetic energy is proportional to k2, we find that the
integral diverges. Only for forces with a finite range, like the Gogny force of
Gaussian shape, the integral converges and one does not need a cutoff.

It most of the applications with a delta force in the pairing channel one
uses a cutoff Λ (rather arbitrarily) and adjusts the strength V0 in such a way,
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that the gap at the Fermi surface corresponds to the experimental odd-even
mass difference.

2.4 Bogoliubov Quasi-particles and Excited States

The main advantage of writing the ground state in the form (46) and (50)
is that despite being very similar to the exact ground state of the seniority
model (condensate of pairs), and therefore containing correlations between
pairs of particles, |BCS⟩ can at the same time be written as a product state
of a new type of fermions, the Bogoliubov quasi-particles. The concept of
quasi-particles as a general concept in many-body physics will be discussed
later in the lecture about Hartree-Fock-Bogoliubov theory. In fact, as we
have seen in the case of a single j-shell we have

|BCS⟩ ∝
∏
k

αk|−⟩ (75)

with

α†
k = uka

†
k − vkak̃, (76)

α†
k̃
= uka

†
k̃
+ vkak. (77)

and the following Fermion communtation relations hold{
αk, α

†
k′

}
= δkk′ , {αk , αk′} = 0, (78)

where we have used (49) and the usual phase convention

uk̃ = uk > 0, vk̃ = −vk < 0 for k > 0. (79)

From Eqs. (76) and (64) we see that a quasi-particle has some properties of
a bare particle and some of a bare hole: Above the Fermi surface (v2k small)
it is nearly a particle, while below the Fermi surface (u2

k small) it is nearly a
hole.

We see from (76) that by using a the trick of a linear a ”Bogoliubov” trans-
formation, we have achieved a representation of the ground state of pairwise
interacting particles in terms of a gas of non-interacting quasi-particles. The
price we have to pay is that the transformation (76) clearly does not conserve
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particle number because we mix creation and annihilation operators. If we
assume that not only the ground state is well represented by a product states
of quasi-particles, but also excited states then the Hamiltonian Ĥqp, which
corresponds to this gas of non-interacting quasi-particles, is given by

Ĥqp = ⟨BCS|Ĥ ′|BCS⟩+
∑
k≷0

Ekα
†
kαk, (80)

where the constant ⟨Ĥ ′⟩ takes account of the fact that we have

αk|BCS⟩ = 0 for all k ≷ 0, (81)

therefore Ĥqp has the right ground state expectations value. The quasi-
particle energies Ek are a straightforward generalization of the definition of
those for real particles (further details will be discussed in the HFB-lecture)

Ek = ⟨BCS|αkĤ
′α†

k|BCS⟩ − ⟨BCS|Ĥ ′|BCS⟩ =
√

(ϵk − λ)2 +∆2
k. (82)

The one-quasiparticle states

α†
k1
|BCS⟩ = a†k1

∏
k ̸=k1>0

(uk + vka
+
k a

+

k̃
)|−⟩, (83)

α†
k̃1
|BCS⟩ = a†

k̃1

∏
k ̸=k1>0

(uk + vka
+
k a

+

k̃
)|−⟩ (84)

obviously have the energy ⟨Ĥ ′⟩+Ek. They are a superposition of states with
odd particle number and describe a nucleus with an odd number of nucleons.
According to the quantum number k1 this state can be either the ground
state or an excited state.

The two-quasiparticle states

α†
k1
α†
k2
|BCS⟩ = a†k1a

†
k2

∏
k ̸=k1,k2>0

(uk + vka
+
k a

+

k̃
)|−⟩, k2 ̸= k̃1 (85)

α†
k1
α†
k̃1
|BCS⟩ = (−vk + uka

+
k1
a+
k̃1
)
∏

k ̸=k1>0

(uk + vka
+
k a

+

k̃
)|−⟩, k2 ̸= k̃1 (86)

have the energy ⟨Ĥ ′⟩ + Ek1 + Ek2 . They describe excited states in the even
system. In this case one pair is broken and the excitation energy is

Ek1 + Ek2 ≥ 2∆. (87)
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The first excited state in the even system thus lies at least 2∆ higher than
the ground state.

In the odd system with the ground state k0 (ϵ̃k0 w 0), the excitation
energy is

Ek − Ek0 =
√
(ϵk − λ)2 +∆2 −∆. (88)

For small excitation energy (ϵk−λ ≪ ∆) we therefore find a high level density
in these odd systems.

We also can explain the odd-even mass difference by the following con-
sideration: The ground state energies EGS

N are given for any N by

EGS
N+2 = EGS

N + 2λ, EGS
N+1 = EGS

N + λ+ Ek0 . (89)

and therefore the odd-even mass difference is given by

1

2

{
(EGS

N+1 − EGS
N )− (EGS

N − EGS
N−1)

}
= Ek0 ≃ ∆ (90)

Eq. (90) is often exploited to determine the gap empirically from the mea-
sured binding energies. It has been found that on the average the gap follows
the relation ∆ = 12/

√
A as a function of teh nucleon number A.

The above considerations give a qualitative understanding of the struc-
ture of many states in the superfluid nuclei. There remain, however, a few
important points to take into account in a more detailed investigation:

2.4.1 (i) The Chemical Potential

The chemical potential λ is determined in such a way that the average particle
number in the BCS ground state has the correct value. With the same λ, we
find for a one-quasiparticle state |k⟩ = α†

k|BCS⟩

⟨k|N̂ |k⟩ = N + u2
k − v2k. (91)

This is N±1 only for levels k which are far away from the Fermi surface. For
the levels in the vicinity of the Fermi surface the average particle number is
wrong. Since the energy depends strongly on the average particle number,
one should re-adjust the chemical potential λ for the different levels in odd
nuclei and also for the excited states in even nuclei. As long as we have
not done this, we should use the operator Ĥ ′ = Ĥ − λN̂ instead of Ĥ for
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the calculation of excitation energies (as we have done so far). This can, for
instance, be seen if we correct for the wrong particle number in the state |k⟩:

Ek
N+1 = ⟨k|Ĥ|k⟩+ dE

dN
(N + 1− ⟨k|N̂ |k⟩) (92)

= ⟨k|Ĥ − λN̂ |k⟩+ dE

dN
(N + 1) (93)

= (EGS
N+1 − λN) + Ek + λ(N + 1) (94)

= EGS
N+1 + Ek + λ (95)

2.4.2 (ii) The Blocking Effect

The occupation probabilities v2k of the BCS ground state (64) were deter-
mined by the variational principle. The ground state of an odd system is
described by the wave function

α†
k1
|BCS⟩ = a†k1

∏
k ̸=k1

(uk + vka
+
k a

+

k̃
)|−⟩, (96)

The unpaired particle sits in the level k1 and blocks this level. The Pauli
principle prevents this level from participating in the scattering process of
nucleons caused by the pairing correlations. The level k1 always stays oc-
cupied and the level k̃1 always stays empty. Only for k ̸= k1 do we have
v2k = v2

k̃
. Using the blocked wave function as a trial wave function in the

variational principle, we find the same equations for v2k as before. The only
difference is that in the calculation of the gap one level is blocked:

∆ = G
∑
k ̸=k1

ukvk. (97)

i.e. the level k1 has to be excluded from the sum because it cannot contribute
to the pairing energy. The chemical potetial is determined by

N = 1 + 2
∑
k ̸=k1

v2k. (98)

Similar equations hold for the case of a higher number of blocked levels, as
in the case of two-quasiparticle excitations.

The change in ∆ and in the uk’s and vk’s is called blocking effect. These
blocking correlations are of the order Ω−1 amd can often be neglected. How-
ever, the correction may be large in some cases. this can happen particularly
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for deformed nuclei where, although there may be 20 levels in the spectrum,
only 4 or 5 contribute appreciably to the sum of Eq. (63). Clearly the block-
ing of one or two such levels in such a case has a big effect so that one cannot
simply equate the excitation energy of the excited state and subtract it from
the vacuum energy. For two-quasiparticle states the corrected energy (≃ 1.4
MeV) is always smaller than the quasi-particle energy (≃ 1.7 MeV), but
much larger than the free-particle energy (≃ 0.15 MeV). One problem that
arises in this corrected theory, in which the vk’s can be appreciably different
in the ground state and the excited states, is that these states are no longer
automatically orthogonal, although sometimes a different quantum number,
such as the spin or the parity, guarantees the orthogonality. In particular,
two-quasiparticle states of spin 0+ are not orthogonal to the ground state in
such cases.
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3 Hartree-Bogoliubov Theory

3.1 General Bogoliubov Transformation

The basic idea of any quasi-particle concept is to represent the ground state
|Φ⟩ of a nucleus as a vacuum with respect to quasi-particles. Here we use the
so-called Bogoliubov quasi-particles.

One can define quasiparticles also in the Hartree-Fock case:

α+
m = a+m for ϵk > ϵF , α+

i = ai for ϵi ≤ ϵF (99)

with the quasiparticle vaccum

|Φ⟩ =
A∏
i=1

a†i |−⟩ and αk |Φ⟩ = 0, for all k ≶ 0 (100)

where (for arbitrary basis states |l⟩)

a†k =
∑
l

Dklc
†
l (101)

BCS quasi-particles α†
k = uka

†
k − vka

†
k̃

α†
k = uka

†
k − vka

†
k̃

(102)

are linear combinations of creation and annihilation operators.
The Bogoliubov quasi-particle operators generalize this concept:

β†
k =

∑
l

Ulkc
†
l + Vlkcl (103)

The indices k and l both run over the whole configuration space (k =
1, . . . ,M). The Hermitian conjugation of this equation gives us the oper-
ator βk. We therefore have a transformation of the operators

c = (c†1 . . . c
†
M , c1 . . . cM) → b = (β†

1 . . . β
†
M , β1 . . . βM) (104)

which acts in a 2M -dimensional space:(
β
β†

)
=

(
U † V †

V T UT

)(
c
c†

)
(105)
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or
b† = W†c† (106)

with

W =

(
U V ∗

V U∗.

)
(107)

The coefficients U, V are not completely arbitrary. We require the new op-
erators β+

k , βk obey Fermion commutation relations as the old ones. This
restricts the matrix W to being unitary.

W+W = 1 and WW+ = 1. (108)

or

U+U + V +V = 1, UU+ + V ∗V T = 1,

UTV + V TU = 0, UV + + V ∗V T = 0. (109)

and we can invert
c† = Wb† (110)

3.2 The Quasiparticle-vacuum

The ground state of the many-body system |Φ⟩ shall be represented as the
vacuum with respect to these quasi-particles. It is therefore defined by:

βk|Φ⟩ = 0 for all k = 1 . . .M. (111)

We call wave functions which fulfill these conditions for a complete set of
quasi-particle operators as called HFB wave functions.

3.3 The Density Matrix and the Pairing Tensor

We now define a generalize density matrix (Valatin-density) of dimension
2M × 2M :

Rll′ =

(
⟨Φ|c†l′cl|Φ⟩ ⟨Φ|cl′cl|Φ⟩
⟨Φ|c†l′c

†
l |Φ⟩ ⟨Φ|cl′c

†
l |Φ⟩

)
=

(
ρ κ

−κ∗ 1− ρ∗

)
. (112)
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in particle space. The quantities ρ and κ are called the normal and abnormal
density (or density matrix and pairing tensor), and are given by

ρll′ = ⟨Φ|c†l′cl|Φ⟩, κll′ = ⟨Φ|cl′cl|Φ⟩, (113)

or in matrix notation

ρ = V ∗V T , κ = V ∗UT = −UV +. (114)

ρ is Hermitian (ρ+ = ρ) and κ is skew symmetric (κT = −κ).
We transform the Valatin density to quasiparticle-space

W+RW =

(
⟨Φ|β†

k′βk|Φ⟩ ⟨Φ|βk′βk|Φ⟩
⟨Φ|β†

k′β
†
k|Φ⟩ ⟨Φ|βk′β

†
k|Φ⟩

)
=

(
0 0
0 1

)
. (115)

R is Hermitian and idempotent:

R+ = R and R = R2. (116)

and diagonal in the quasiparticle-basis. We obtain the relations

ρ2 − ρ = −κκ+, ρκ = κρ∗ (117)

3.4 The Bloch-Messiah Theorem

Using the relations (117) Bloch and Messiah have shown that the unitary
matrix W can be decomposed into a product of three matrices of a very
special form:

W =

(
D 0
0 D∗

)
.

(
Ū V̄
V̄ Ū

)(
C 0
0 C∗

)
. (118)

or
U = DŪC, V = D∗V̄ C. (119)

D and C are unitary matrices and Ū , V̄ are real matrices of the dimension
M ×M containing essentially only the values 0 and 1 in the diagonal and up
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to a string of 2×2 matrices along the diagonal:

U =



0
·

0
0 0 0

0
u1 0
0 u1

0 0

·

0 0
un 0
0 un

0

0 0 0
1

·
1



(120)

V =



1
·

1
0 0 0

0
0 v1

−v1 0
0 0

·

0 0
0 vn

−vn 0
0

0 0 0
0

·
0



(121)

Its meaning is that the general Bogoliubov transformation c† → b† can be
decomposed into three parts:

c → a
c† → a†

}
→

{
α → β
α† → β†

D Ū, V̄ C
(122)

(i) a unitary transformation of the particle operators c† among themselves
as in the HF case:

a†k =
∑
l

Dlkc
†
l . (123)

It defines a new basis is called the canonical basis.
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(ii) a special Bogoliubov transformation, which distinguishes between paired
levels (up > 0, vp > 0)

α+
p = upa

+
p − vpap̄

α+
p̄ = upa

+
p̄ + vpap (124)

xwhere (p, p̄) are defined by the 2×2 boxes and blocked levels which are
either occupied (vi = 1, ui = 0) or empty (vm = 0, um = 1):

α+
i = ai , α+

m = a+m,

αi = a+i , αm = am. (125)

(iii) a unitary transformation of the quasi-particle operators α+
k among them-

selves
β+
k =

∑
k′

Ck′kα
+
k′ (126)

The decomposition (118) defines fully occupied levels (i ), completely
empty levels (m), and paired levels (p) with canonical conjugate states p, p̄.
Often, but not always, time reversal symmetry is canonical conjugation.

Using the Bloch-Messiah decomposition, we find

ρ = DV̄ 2D+, κ = DŪV̄ DT . (127)

ρ is diagonal in the canonical basis. The eigenvalues of ρ are the occupation
probabilities v2k and the eigenvectors Dk are the wave functions in the canon-
ical basis. At the same time, κ is in its canonical form: it decomposes into
2× 2 matrices: (

0 ukvk
−ukvk 0

)
. (128)

Many theories developed originally in the HF picture of pure Slater determi-
nants (ρ2 = ρ) can be immediately generalized to the HFB case with pairing
correlations simply by working in the 2M -dimensional formalism with the
super-matrix R.
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3.5 The HFB Wave Function

The HFB wave function is defined by (111). It can be written as

|Φ⟩ =
∏
k

βk|−⟩. (129)

If k runs over all values k = 1 . . .M . In many cases, however, such a function
vanishes identically. In a HF state, for instance, the product can run only
over the annihilation operators of all hole states

|HF ⟩ =
∏
i

αi|−⟩ =
∏
i

a+i |−⟩. (130)

In cases of blocking, we therefore have to represent it in the canonical basis:

|Φ⟩ =
∏
i

′αi|−⟩ =
∏
i

a+i
∏
p

(up + vpa
+
p a

+
p̄ )|−⟩. (131)

where
∏′ runs over all paired (p, p̄) and all occupied ( i) levels. Therefore,

depending on whether the number of occupied levels i is even or odd, the
function |Φ⟩ is a superposition of states with an even and an odd particle
number (number parity). It is evident that a wave function |Φ⟩ with even
number parity can only describe a system with an even particle number and
vice versa.

3.6 The HFB Equations

We give three ways to derive the HFB-equations:

3.6.1 Derivation from the Thouless Theorem

We assume that |Φ⟩ is an approximation for the exact ground state of the
Hamiltonian

Ĥ =
∑
l1l2

ϵl1l2c
+
l1
cl2 +

1

4

∑
l1l2l3l4

v̄l1l2l3l4c
+
l1
c+l2cl4cl3 (132)

and use the variational principle of Ritz. The trial wave functions are the
set of all generalized product states |Φ⟩ of the HFB type. As in the BCS
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model these wave functions violate particle number. We have to use the
Hamiltonian Ĥ ′ = Ĥ − λN̂ . For simplicity we use in the following only Ĥ.
Starting from the variational principle

δ
⟨Φ|Ĥ|Φ⟩
⟨Φ|Φ⟩

= 0, (133)

we have to investigate small variations |δΦ⟩ in the vicinity of the solution.
We use a theorem of Thouless and express the function |Φ′⟩ = |Φ⟩ + |δΦ⟩,
which is not orthogonal to |Φ⟩ by:

|Φ′⟩ = exp

(∑
k<k′

Zkk′β
+
k β

+
k′

)
|Φ⟩. (134)

In contrast to the coefficients Ulk and Vlk which obey unitarity relations, the
variables Zkk′ (with k < k′) are independent variables. The solution |Φ⟩ of
the variational equation corresponds to Zkk′ = 0. For infinitesimal variations,
we expand up to second order. Using the quasi-particle representation for
the Hamiltonian

Ĥ = H0 +
∑
k1k2

H11
k1k2

β+
k1
βk2

+
∑
k1<k2

(H20
k1k2

β+
k1
β+
k2
) + h.c.) +Hint. (135)

and find

⟨Φ′|Ĥ|Φ′⟩
⟨Φ′|Φ′⟩

= H0+
(
H20∗ H20

)( Z
Z∗

)
+
1

2

(
Z∗ Z

)( A B
B∗ A∗

)(
Z
Z∗

)
.

(136)
where the index of the vectors and the matrixes runs over all pairs (k < k′)
and

H0 = ⟨Φ|Ĥ|Φ⟩, Akk′ll′ = ⟨Φ|[βk′βk, [Ĥ, β+
l β

+
l′ ]]|Φ⟩,

H20
kk′ = ⟨Φ|[βk′βk, Ĥ]|Φ⟩, Bkk′ll′ = −⟨Φ|[βk′βk, [Ĥ, βl′βl]]|Φ⟩,

(137)

Eq. (136) gives a quadratic approximation of the multidimensional energy
surface in the vicinity of |Φ⟩. The variation with respect to Z∗

kk′ yields

∂

∂Z∗
kk′

⟨Φ′|Ĥ|Φ′⟩
⟨Φ′|Φ′⟩

= H20
kk′ = 0, (138)
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which means that the linear terms H20 vanish at the stationary point. To
see, whether this is a minimum or a saddle point, the quadratic terms must
be investigated the matrix

S =

(
A B
B∗ A∗

)
(139)

is called the stability matrix (or curvature tensor). At a minimum it has to
be positive definite.

The variational equations are not affected by a C-transformation of the
quasi-particles among themselves. The requirement H20 = 0 determines,
therefore, only the first two of the Bloch-Messiah transformations. The third
transformation can be used to diagonalize H11. Together with Eq. (138),
this corresponds to the diagonalization of the super-matrix(

H11 H20

−H20∗ −H11∗

)
=

(
⟨Φ|{[βk, Ĥ], β+

k′}|Φ⟩ ⟨Φ|{[βk, Ĥ], βk′}|Φ⟩
⟨Φ|{[β+

k , Ĥ], β+
k′}|Φ⟩ ⟨Φ|{[β+

k , Ĥ], βk′}|Φ⟩

)
(140)

in the space of the basis operators cl, c
+
l this matrix has the form

H = W
(

H11 H20

−H20∗ −H11∗

)
W+ =

(
h ∆

−∆∗ −h∗

)
(141)

with

hll′ = ⟨Φ|{[cl, H], c+l′ }|Φ⟩ and ∆ll′ = ⟨Φ|{[cl, H], cl′n}|Φ⟩. (142)

Applying Wick’s theorem, we find

h = ϵ+ Γ− λ, Γll′ =
∑
qq′

v̄lq′l′qρqq′ , ∆ll′ =
∑
q<q′

v̄ll′qq′κqq′ . (143)

We are left with a diagonalization problem for the matrix H, the so-called
HFB equations : (

h ∆
−∆∗ −h∗

)(
U
V

)
k

=

(
U
V

)
k

Ek. (144)

where the columns Uk and Vk of the matrices U and V determine the quasi-
particle operators β+

k (103). In the basis corresponding to the operators βk,
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both matrices H and R are diagonal. We therefore get as an equivalent
condition:

[H,R] = 0, (145)

The Hamiltonian (135) now takes the form

Ĥ = H0 +
∑
k

Ekβ
+
k βk + Ĥint. (146)

Hint contains the terms H40, H31, and H22. These terms are neglected in
the HFB approach. In this case, H is diagonal. Its eigenstates are the quasi-
particle vacuum |Φ⟩ (with the eigenvalue H0), one-quasi-particle states

|Φk⟩ = β+
k |Φ⟩, (147)

with the eigenvalues H0 + Ek, two-quasi-particle states, and so on. The
excited states to |Φ⟩ are states with an even number of quasi-particles. The
states with odd number of quasi-particles describe the neighboring nuclei
with mass numbers (A± 1).

3.6.2 From the Wick Theorem

Let us give a different derivation which shows some interesting aspects of the
theory and requires less calculations. Using the theorem of Wick, we expand
the Hamiltonian in normal order (: :) with respect to the ground state |Φ⟩.
We then get for the one-particle operator

c+1 c2 = ⟨Φ|c+1 c2|Φ⟩+ : c+1 c2 :

= ρ21+ : c+1 c2 : (148)

and for the two-particle operator

c+1 c
+
2 c4c3 = ρ31ρ42 − ρ32ρ41 + κ∗

12κ34

+ ρ31 : c
+
2 c4 : +ρ42 : c

+
1 c3 : −(3 ↔ 4)

+ κ∗
12 : c4c3 : +κ34 : c

+
1 c

+
3 :

+ : c+1 c
+
2 c4c3 : . (149)

Using the definitions (143) for Γ and ∆ we immediately find

H = H0 +
1

2
:
(
c+ c

)( h ∆
−∆∗ −h∗

)(
c
c+

)
: +

1

4

∑
1234

v̄1234 : c
+
1 c

+
2 c4c3 : .

(150)
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The last term contains only products of four-quasi-particle operators. It
corresponds to H40, H31, and H22 in the quasi-particle representation.

3.6.3 From Density Functional Theory

Density functional theory of superfluid systems starts from an energy func-
tional, which depends on two densities, or on the Valatin density

E[ρ, κ] = E[R]

Now we carry out a variation with respect to R. Of course, the matrix
elements are not independent variables, because we require R to correspond
to a generalized Slater determinat |Φ⟩, which means that we have to carry
out the variation with the constraint R2 = R, wich is added with a matrix
Λ of Lagrangeparameters

δ(E[R]− Tr(Λ(R2 −R)) = 0.

or

Tr

(
(
δE

δR
δR− ΛδRR− ΛRδR− ∗δR

)
= 0,

Tr ((H−RΛ− ΛR− ∗)δR) = 0,

.

Here we have introduced the mean field Hamiltonian

H =
δE

δR∗ =

(
h ∆

−∆∗ −h∗

)
.

with

h =
δE

δρ̂∗
, ∆ =

δE

δκ̂∗ ,

From the variational equation we find

H−RΛ− ΛR− ∗ = 0.

Multiplying this by R from the left and from the right we find

HR−RΛR=0,

RH−RΛR=0.

26



or
[H,R] = 0

This means thatR andH diagonal in the same basis. SinceR is diagonalized
by the HFB wave functionsW , this is also true for the matrixH, which means
that we have the HFB-equations.

3.7 Properties of the HFB Equations

The HFB equations are a 2M -dimensional set of non-linear equations. They
show more or less the same properties as the HF equations. They have to be
solved by iteration and we have the theorem of self-consistent symmetries.

Differences to the HF equations are

• The chemical potential has to be determined by the average particle
number

• We have two densities ρ and κ and two selfconsistent potentials Γ and
∆.

• The dimension is twice as big

The equations have a symmetry:

HW =

(
h ∆

−∆∗ −h∗

)(
U V ∗

V U∗

)
=

(
U V ∗

V U∗

)(
Ek 0
0 −Ek

)
. (151)

To each quasiparticle energy Ek with the eigenfunction (Uk, Vk) there
exists an eigenvalue −Ek with the eigenvector (V ∗

k , U
∗
k ). An exchange of these

two eigenvectors corresponds to a replacement of one operator β+
k by βk and

vice versa. It is forbidden to choose Ek and −Ek at the same time (otherwise
it is impossible to fulfill the Fermi commutation relations for the operators
β, β+). Therefore, we have to decide for each k (k = 1 . . .M) whether one
takes the eigenvalue Ek with the eigenvector (Uk, Vk) or the eigenvalue −Ek

with the eigenvector (V ∗
k , U

∗
k ). This choice has a clear correspondence in the

HF-case, where one has to decide, whether the level k is occupied or empty
in the HF-wave function.

Usually one chooses only positive eigenvalues Ek > 0, because in this case
the quasiparticle vaccum |Φ0⟩ has the lowest energy. In most cases (but not
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always) this corresponds to a fully paired state. In order to see, if this is
true, one can use the Bloch-Messiah theorem and determine the canonical
basis by diagonalization of the density matrix ρ = V ∗V ᵀ.

For a fully paired state we have |Φ0⟩ = β1 . . . βM |−⟩ with even number
parity. It is a vacuum with respect to the operators (β1 . . . βM). Starting
with this ground state for an even system we can construct a wave function
in an odd system, i.e. a one-quasiparticle state

|Φ1⟩ = β+
1 |Φ0⟩ (152)

It is a vacuum with respect to the operators (β̃1 . . . β̃M) with

β̃1 = β+
1 , β̃2 = β2, . . . β̃M = βM . (153)

The exchange of a quasi-particle creation operator β+
1 with the correspond-

ing annihilation operator β1 means that we have replaced columns 1 in the
matrices U and V by the corresponding columns in the matrices V ∗, U∗:

(Ul1, Vl1) ⇐⇒ (V ∗
l1, U

∗
l1) (154)

Thus, by making such a replacement, we change the number parity of the
corresponding vacuum and go over to a one-quasi-particle state. This can be
continued. Starting form the fully paired ground state we can come to many-
quasi-particle states by simply interchanging the corresponding columns in
the HFB coefficients. With this trick we represent quasi-particle excitations
as HFB vacua for properly defined new quasi-particle operators.

Of course, the transformations C, Ū , V̄ , and D of Eq. (118) are changed
by the replacement, because the canonical basis for |Φ1⟩ is, in general, dif-
ferent form that for |Φ0⟩. Only in cases where the C transformation is equal
to unity (i.e., if |Φ1⟩ = α+

1 |Φ0⟩) do the two wave functions have the same
canonical basis.

For the paired levels (k, k̄) in the canonical basis we calculate the matrix
element of H20 in the canonical basis. It has to vanish and we find

ukvk(hkk + hk̄k̄) + ∆kk̄(u
2
k − v2k) = 0, (155)

As shown in the BCS-model the solution of this equation is

u2
k

v2k

}
=

1

2

1± ϵκ − λ√
(ϵκ − λ)2 +∆2

kk̄

 . with ϵκ =
1

2
(hkk + hk̄k̄) (156)
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Note, hkk and ∆kk̄ diagonal and skew-diagonal matrix elements. Neither
the matrix hkk′ , nor the matrix ∆kk′ is diagonal in the canonical basis. In
many cases one has and additional symmetries, such as time-reversal which
guarantees that the matrices h and ∆ have block structure

h =

(
h++ 0
0 h−−

)
, and ∆ =

(
0 ∆+−

−∆ᵀ
+− 0

)
. (157)

In this case the HFB-matrix can be reduced to half dimension:(
h++ ∆+−

∆†
+− −h∗

−−

)
. (158)

3.8 The Pairing-plus-Quadrupole Model

From general considerations of the theory of effective forces in nuclei one
finds that the effective interactions in the ph-channel are different from those
in the pp-channel.

(i) The interaction between the particles can be summed up, as a first
approach, by an average spherical single-particle potential which is lo-
calized in space and breaks the translational invariance.

(ii) In open shell nuclei, there are two types of additional correlations: long-
range ph-correlations can be taken into account by a deformation of the
mean field. At this point the rotational symmetry is lost.

(iii) Short-range pp-correlations are treated by a self-consistent pairing po-
tential ∆ which violates number symmetry.

These three aspects are included most simply in the pairing-plus-quadrupole
model. The average spherical potential is approximated by a spherical sin-
gle particle energies ϵ0k.The remaining residual interaction has two parts, one
contributing to Γ (which here is only that part of the field going beyond the
spherical part already contained in the single-particle energies ϵ0), and the
second which contributes to ∆.

Both parts are chosen to be separable in the appropriate indices.

H =
∑
k

ϵ0kc
+
k ck −

χ

2

2∑
µ=−2

: Q+
µQµ : −GP+P, (159)
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with the quadrupole operator

Qµ =
∑
kk′

⟨k|r2Y2µ|k′⟩ c+k ck′ , (160)

and the creation operator for a Cooper pair

P+ =
∑
k>0

c+k c
+

k̃
. (161)

The actual values of the force constants χ and G are adjusted to experimental
data.

Working in a basis symmetric with respect to the signature operation
Rx = exp(iπjx). we find a HFB single-particle Hamiltonian of the form:

H =

(
h ∆

−∆∗ −h∗

)
. (162)

where

h = h0 − 1

2

2∑
µ=−2

qµ(Q
+
µ +Qµ)− λ, with qµ = χ⟨Φ|Qµ|Φ⟩ (163)

and ∆ = G⟨Φ|P+|Φ⟩ is a multiple of the unity matrix. The deformation

parameters qµ and the gap parameter ∆ depend on the solution |Φ⟩, that is
of ρ and κ. They have to be determined by iteration, or by - what is equivalent
in the case of separable forces - minimizing the energy E(qµ,∆) with respect
to these parameters. Choosing the principal axis of the density distribution
as the axis of our coordinate frame implies q1 = q−1 = 0 and q2 = q−2. For
a pure pairing force, since ∆ is a multiple of unity and invariant under the
first Bloch-Messiah transformation. To determine the transformation D it is
therefore sufficient to diagonalize the self-consistent field:

h = ϵ0 + Γ = ϵ0 − q0Q0 − q2(Q2 +Q−2). (164)

This is exactly a Nilsson Hamiltonian for fixed deformation parameters q0
and q2. The canonical basis in this case is therefore the Nilsson basis with
the eigenvalues ϵk. In this basis the HFB equations split into 2× 2 matrices:(

ϵk − λ ∆
)
,

(
uk

vk

)
=

(
uk

vk

)
Ek (165)
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which have the BCS solutions.
To summarize, then, the complete solution of the HFB equations in the

pairing-plus-quadrupole model corresponds to a Nilsson diagonalization with
variable deformation parameters q0 and q2, a subsequent BCS calculation
with constant gap parameter ∆ = p0, and a minimization of the total energy

E(q0, q2,∆) = ⟨Φ|H|Φ⟩ =
∑
k

ϵkv
2
k +

1

2χ
(q20 + 2q22)−

∆2

G
(166)

This force explains the Nilsson model with BCS occupation probabilities very
nicely and by a suitable choice of the constants G and χ one can reproduce
all its results. We have to emphasize, however, that it is only a model
constructed for certain phenomena, namely quadrupole deformations and
monopole pairing correlations and the interplay between these degrees of
freedom. For these phenomena it contains all the gross features of a more
realistic approach.

3.9 HFB-theory in the continuum

For exotic nuclei with a large neutron excess the Fermi level of neutrons
comes close to the continuum limit. If BCS-correlations produce a scattering
of pairs aroud the Fermi surface, we will have partially occupied levels in the
continuum. Within BCS-theory these are independent particles and form a
gas, which evaporates and the nucleus is no longer stable. In fact, this is
only an artifact of the BCS-model. Dobaczewski, Flocard and Treiner could
show that in a full HFB-theory we will still have a bound system as long as
the chemical potential is negative, i.e. below the continuum limit.

Treating the continuum properly, we have to work in r-space. In this
case the HFB-equations are integro-differential equations and the solutions
have to fulfill proper boundary conditions. In many applications one uses
zero-range forces in the ph-channel (e.g. Skyrme forces) as well as in the
pp-channel. Neglecting spin- and isospin degrees of freedom the potentials
Γ(r) and ∆(r) are local and one is left with differential equations of the form(

p2

2m
+ Γ(r)− λ ∆(r)

∆(r) − p2

2m
− Γ(r) + λ

)(
U(r)
V (r)

)
=

(
U(r)
V (r)

)
E. (167)

In the assymptotic region (r → ∞) the potentials Γ and ∆ vanish and we

31



find

− }2

2m
∆U(r) = (λ+ E)U(r) (168)

− }2

2m
∆V (r) = (λ− E)U(r) (169)

It has the asymptotic solutions:

U(r)∼
{

cos(kur + δu) for λ+ E > 0
exp(−κur) for λ+ E < 0

(170)

V (r)∼
{

cos(kvr + δu) for λ− E > 0
exp(−κvr) for λ− E < 0

(171)

with ku =
√
2m(λ+ E), κu =

√
−2m(λ+ E), kv =

√
2m(λ− E), κv =√

−2m(λ− E). For λ > 0, the entire spectrum is continous. For λ < 0 only
the part of the spectrum with E > −λ has a continuum, but for E < −λ
the spectrum is discrete and the wave functions decay exponentially. We
choose only positive E-values and in the case of λ < 0 we have λ − E < 0
and therefore for all energies exponentially decaying V (r)-functions. The
density

ρ(r) =
∑

Ek<|λ|.

|Vk(r)|2 +
∫

E>|λ|

g(E)dE|VE(r)|2 (172)

is a sum over the discrete part of the spectrum and an integral over continuous
part of the spectrum with the level density g(E). Since all the functions
Vk(r) and VE(r) decay exponentially, the density of the system is localized.
Of course, we have to include a cutoff Λ for zero-range pairing forces, but
this does not influence the fact that the system is bound.

Of course, there is a question left: As we have seen the full HFB-function
can be written in the canonical basis as a BCS-function and we find definitely
canonical levels with ϵκ = hkk > 0 which are partially occupied. Why can
it happen, that the system is still stable, although simple BCS-theory leads
to an unstable solution in such a case. The answer is, that in the canonical
basis h is not diagonal, neither ∆. The canonical levels ϵκ = hkk do not
correspond to eigenstates of h and they are not occupied by independent
particles forming a gas. One needs the third transformation in the Bloch-
Messiah theorem to get to the independent quasiparicles with energyy E.
This additional mixing brings additional binding. The deeply bound states
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at the bottom of the average potential Γ lead to large positive quasi-particle
enegies and to narrow resonances in the continuum.
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