The Mathematics of Quantum Mechanics




Hilbert spaces of finite dimension

¥-> a vector space of dimension N over complex numbers. | ¢ >,|x>,... E ¥

A, U € G = linear vector space: if| &>, |x>, .. EX = A|lp) =|Ap) € H
(le) +Alx)) € H

Hilbert space = positive-definite scalar product: <X|QD>

- linearity: X[(@1+Ap2)) = (Xler) + A x[¢2)
— complex conjugation: <X|QD>= <QD|X>* ‘ <§D|g0> real!

(X|@) linearin | >, and antilinearin | x> :
(X1 FAx) @) = (xile) + A" (x| e)

The scalar product is positive-definite= <QD|QD> =0 |§0> =0



- orthonormal basis { | n> } of an N-dim. Hilbert space:
()} ={11).12).....1n).....IN)} wmp (nlm)=35,,

Any vector | d > € ¥ can be decomposed on this basis with coefficients ¢, which are the
components of | ¢ > in this basis:

|QD> — ZC,,|I’Z> Cm — <m|¢>

n=|1

N N
é scalar product: (x|¢) = >  di c,(m|n)=) _d:c,

n.m=1 n=I

N
DEF.the norm of |d>:  ||¢||* = (@le) =Y |c,|* >0

n=1

The Schwarz inequality: | [(x|¢)|” < (x|x)(ele) = [IxII* lle]I’

Hilbert space: linear vector space, complete and separable, on which the scalar product
is defined.




Linear operators on #

Linear, Hermitian, unitary operators

A linear operator A: |A(e+Ax)) = |A@) +A|Ax)

This operator is represented in a given basis { | n >} by a matrix with elements Anm:

N
[Ap) =D _c,|An)
n=1
The componentsd., of |[A@) =>" d, |m):

N N
d, = (mlAg) =) c,(mlAn) =) A,c,
n=1 n=1

) A, =(mAn)

The Hermitian conjugate (or adjoint) of A, At, is defined: (x|AT@) = (Ax|@) = (p|Ax)*



(A7) = A,

mn nm
The Hermitian conjugate of the product AB of two operators is BTAT:
(X|(AB) @) = (ABx|¢) = (Bx|A"¢) = (x|B"AT¢)

An operator satisfying A = AT is termed Hermitian or self-adjoint.

A unitary operator: UU' = U'U =1 é U-'=U"

In a finite-dimensional space the necessary and sufficient condition for an operator U to be
unitary is that it leaves unchanged the norm:

Ul = ||¢|]> or (Up|Up) = (¢|l¢) Yoe X

Proof (¢+Axle+Ax) = (ele) + AP (xIx) +2Re (Alelx))

(Ule+Ax)|U(¢ + Ax)) = (Ue|Up) + |AI>(Ux|Ux) +2Re (A(Ug|Ux))
Subtracting the second of these equations from the first = (Ug|Ug@) = (@|@) Yo e H

BE) Re(A(¢lx) =Re(A(Ug|Ux)) B (Ug|Ux) = (¢lx) = U'U=1



Unitary operators change the orthonormal basis in #: |n') = |Un)

) (m'|n) = (Um|Un) = (m|n) =8, =8,,,

N
The components of a vector: ¢/, = (n'|¢) = (Un|e) = (n|U'¢) = > U/ c,,

m=1

The transformation of matrix elements:

N
Al = (m'|An") = (Um|AUn) = (m|U'AUn) = >_ U}, A, U,

k,l=1

Projection operators and Dirac notation

3’61.% slubspace of #, and ¥, is the orthogonal subspace. Any vector |¢$> can be decomposed
uniquely:

o) =le) +ler), o) €Hys @) € Hy, (@)le,) =0.

The projector P, onto #, is defined by its action on an arbitrary vector |p> € %:

Pro) = |ey)




Projectors - linear and hermitian operators: if |x) = |x;) + |x2)

ﬁ X|Pre) = (xle) = aler),

X7/ @) = (Pixle) = (ule) = (xlen.

|~7)12€D>:|-7)1€01>:|€01>:>?12:~7)1

= eigenvalues O or 1.

Every linear operator satisfying: .’Pf.’]’l = P, = PROJECTOR.

Proof: .’P;L =P, = thevectors P, |®> form a vector subspace #,.

o) =|Pio) +(l@) —|Pr9)) = |Pro) +|@s)

é |¢,) is orthogonal to every vector | P, x)

(p—Pro|Pix) = <T1€0_?12€0|X> =0.



Dirac notation:

b)) € ¥ > “ket” and { d| - ”bra”. Instead of |A ¢ ), in this notation we use A| ). The

scalar product:
(X|A@) > (x|Ale)
(Aelx) = A" (el x)

Projectors: "])Qo = |o)(¢|

é decomposition:

X) = le)(elx) + (x) = le){elx)) = le){elx) + Ix1) = Pelx) + Ix0)

If the vectors: {| 1), ..

M)}, M < N form an orthonormal basis of the subspace #; =

*

Pr=_In)(n

n=1

If M = N we obtain the decomposition of the N
identity operator:
I=7) |n){n|

n=1




Spectral decomposition of Hermitian operators

Diagonalization of a Hermitian operator

Let A be a linear operator. If there exists a vector | > and a complex number a such that:
Alg) =ale)

= | ¢> is an eigenvector, and a an eigenvalue of the operator A. The eigenvalues are
solutions of the equation:

det(A—al) =0

Theorem. The eigenvalues of a Hermitian operator are real and the eigenvectors
corresponding to two different eigenvalues are orthogonal.

Proof: (¢|Ale) = (plag) = al|e|
= (Aple) = (agl) = a'll¢|l? WBp [a=d"

Alp) = ale)
(X|Ag) = alx|e) = (Ax|e) = b{x|®)
Alx) =blx) * ﬁ (xle) =0if a#b




The eigenvectors of a Hermitian operator normalized to unity form an orthonormal basis

of # if the eigenvalues are all distinct.

If a,, is a multiple root of det(A-al)=0, the eigenvalue a, is then said to be degenerate.

Theorem. If an operator A is Hermitian, it is always possible to find a (nonunique)
unitary matrix U such that UlaUisa diagonal matrix, where the diagonal elements are
the eigenvalues of A, each of which appears a number of times equal to its multiplicity.

Let a,, be a degenerate eigenvalue and let G(n) be its multiplicity. Then there exist G(n)
independent eigenvectors corresponding to this eigenvalue. These eigenvectors span
a vector subspace of dimension G(n) called the subspace of the eigenvalue a,,, in which

we can find a (nonunique) orthonormal basis

n,ry, r=1,...,G(n)
Aln,r)y=a,|n,r)

G(n)

The projector onto this vector subspace: P = Z \n, r){(n, r|

r=1

n

G(n)

ZT,,:ZZ|H,I’><H,F|:I

r=1




Let the vector |p> € ¥ = Alp)y =) AP, le) =) a,P,|¢)

G(n) Spectral

é A= P =, e ia i decomposition

n r=1 of the operator A.

Complete sets of compatible operators

Two operators A and B commute if AB = BA, and in this case their commutator [A,B]

ishes.
vanishes (A, B] = AB— BA

Theorem. Let A and B be two Hermitian operators such that [A, B] = 0. We can then
find a basis of # constructed from eigenvectors common to A and B.

= an ensemble of Hermitian operators A,,...A,, that commute pairwise and whose
eigenvalues unambiguously define the vectors of a basis of # is called a complete set of

compatible operators (or a complete set of commuting operators).



Unitary operators and Hermitian operators

Theorem. (a) The eigenvalues an of a unitary operator have modulus unity: a, = exp(ia,,),
a, real. (b) The eigenvectors corresponding to two different eigenvalues are orthogonal.
(c) The spectral decomposition of a unitary operator is written as a function of pairwise
orthogonal projectors P, as

U — Z ang)n — Zeia” ‘7)11 Z '7)” — I

let A=Y a,P, beaHermitianoperator= U =) e““P =¢e'“* unitary operator.

n

Operator-valued functions

A function f(A) of an operator?

1) If the operator A can be diagonalized: A = XDX_l, where D is a diagonal matrix whose
elements are d . Let us assume that a function f is defined by a Taylor series which
converges in a certain region of the complex plane |z|<R:

flz) = Z C/)Zp

p=0



= operator-valued function: f(A) =) ¢,A” =) _ (:pXD”X_l =X|)> ¢,D’ X!
p=0 p=0 p=0

diagonal matrix with
elements f(d,)), well
defined if |d |<R Vn.

The exponential of an operator: eXpA = —
p=0 p:
Generally: expAexp B #expBexpA

A sufficient (but not necessary!) condition for the equality to hold is that A and B commute.

For a Hermitian operator A whose spectral decomposition is given by: A = Z a”.'P,,

n

é any function of A can be defined: | f(A) =) f(a,)?P,
n




State vectors and physical properties

The superposition principle

The space of states: the properties of a quantum system are completely defined by
its state vector | d) - an element of a complex Hilbert space # (space of states).

-> normalized state vector: ||g0||2 = {(ple) =1

- linearity of the space of states = superposition principle: if |¢) i|x) € # are state
vectors =

Ale) +mlx)

V= ey + ahol

€ # is a state vector (A, u are complex numbers).



Probability amplitudes and probabilities: if | ) i |x? € # are state vectors of a quantum
system, there exists a probability amplitude of finding | &) in the state | x? given by the scalar
product on #:

H:ale — x) = {(xle)

=> the probability: P(e — x) =l|a(e — )()|2 = |<X|§0>|2

Physical properties and measurement

Physical properties and operator: with every physical property (observable) A there
exists an associated Hermitian operator A that acts on the Hilbert space of states.

Example: an observable A > Hermitian operator A with nondegenerate eigenvalues:
A=) |ma,(n|
n

If the quantum system is in a state | &) = | n), the value of the operator A in this states is apn,
that is, the physical property A takes the exact numerical value a,..



- in the general case we define the expectation value of the observable A in the state | )

|

N
(A, = Jim 254,
p=I

/ result of the p-th measurement
number of measurements

The expectation value is a function of A and | $):
(A, =Ypua, = Y (elm)a,(nle) = (¢lAle)

— general case with degenerate eigenvalues:

@) =2 In.r){n.rle) =) c,ln.r)

n,r n,r

— the probability of observing the eigenvalue a;:

p(all) — Z |Cnr|2 — Z<(P

— <§D|?,,|QD>, ‘?n:Z

r

n, r)(n, rle)

— projector on
the subspace a,

n,ry{n,r|



the expectation value <A>¢ of the physical property A of the system in the
state | b):

(A), =2 a,p(a,) =) (¢ln.r)a,(n. rle)

n,r

(A), = (¢|Alp)




The tensor product of two vector spaces

Two QM systems: the corresponding spaces of states yelN and 362'\/', of dimensions N and M.
p) € F Ix) € HM

{le)s [xX)} = avector that belongs to a space of dimension NM = tensor product of spaces:

HY T

Orthonormal bases |n) € ¥,Nand |m) €%,V

) = zcn n), |x) = ; d, |m)

?CIN X .7(2M —> vector space of dimension NM on which an orthonormal basis is
defined: {|n),|m>}= |n) ®|m)

<n/ X mlln X m> — 8n’n§m’m




The tensor product of the vectors [b) i [x):

|QD®X> — chdmln®m>

n,m

- linearity: e® (X, +AX2)) = |le® X)) +Ale® X>2)
|(901 ‘|‘A€02)®X> = |901 ®X> ‘|‘A|‘Pz ®X>

The tensor product is independent of the choice of basis. Let the new bases of yel'\' i %ZM
be defined by the unitary transformations:

|l> — ZRin |I’l>, |.]> — ZSjm |m>

m

R—l :RJ( S—l — S%

é |l®]> :ZRinSjm|n®m>

n,m

EDIAUNNIGEDIAY)

m) >cdlioj)=lesx
i,j



Postulate: The space of states of two interacting quantum systems is: }[{V X .7'[2M

The most general state vector: D) =>"b,,, |In®@m)

n,m

- in general, it cannot be written as a tensor product |[p®x?, except for independent
systems. In that case b, ,,=c,,d,,. State vectors which can be written as a tensor product
form a subset (but not a subspace) of 361N ® ?IBZM. A state vector which cannot be written
in the form of a tensor product is termed entangled state.

The tensor product C = A®B of two linear operators A and B acting respectively in the spaces
yelN i yez'V' is defined by its action on the tensor product vector |pey):

(A®B)|e® x) = |A¢® By)
= its matrix elemnts in the basis |n ® m)

("@m'|AQBln®@m)=A,,, B

nn*™~m'm

In general, an operator C acting on 361'\' ® %ZM will not be of the form A®B:

(n"@m'|Cln@m)=C,, .

nm:inm



Special case: A=l, or B=l, (identity operators on yel'\' [ %ZM)

(AQL)|e@x)=]A¢®x), (I;®B)le¢®@ ) =|¢RBY)

Matrix elements:

(n"@m|AQL|In@m)=A, o (n"@m'|l, @ Bln®m)=25, B,,

nn“Ym'm>? nn=m'm

If |&) is an eigenvector of the operator A:  A|d) =a|d) = |dex)is an eigenvector of the
operator A®|,: Ael, [box) = a |doy)

Notation: Al ® x) = ale® x)

Alox) = alex)



The density operator

Definition and properties

(W) € H, @ FH, > if [W)=|d,2d,?, the state vector of system (1) is |d,). In the general
case when | is not a tensor product but rather an entangled state,
it is not possible to associate a definite state vector in #, to the system

@ or a vector in £, to @

i)  when a quantum system can be described by a vector in the Hilbert space of states =
a pure state (complete information about the system is available)

ii) when the information on the system is incomplete = a mixture ( the system is described
by a density operator)

Pure state: |QD> ceH

- the projector onto |b): -7)¢ = |@){¢|

is invariant with respect to a phase transformation: |¢) — ele @)



{|n>} = an orthonormal basis of ¥ = the expectation value of an observable:

(A) = (elAlg) =) (@|n)(n|Alm)(m|e)

n,m

=Y (m|e)(e|n)(n|A|m)

n,m

=Y (m|P,Alm) =Tr(P,A).

m

Mixture of guantum states:

Po (0 =P, =1,2.4Ps = 1) - probability that the system is in the state |b,>. It is not
possible to associate a definite state vector of # to the system,
but only a mixture of states with corresponding probabilities.

DEF. Density operator (state operator) P=2 Pul@a) (@l =D PuP,,

Q (Ay =P, (A)y = Pole.lAle,) = Tr(pA)




Properties: - p is Hermitian p=pt
->Trp=1
—> p is a positive operator (Hermitian and has positive eigenvalues)

(elple) =0

—> a necessary and sufficient condition for p to describe a pure state is p2 =p.
— spectral decomposition:
p=>_p,|n)n|
n

The reduced density operator

A density operator p acting in the space £, ® £,. What is the density operator of the
system @? An observable C = A ® |, which depends only on @ = define a density
operator p(l) acting in #£4 such that:

(A) =Tr (p""A)

<A®I2> - TI'([A@Iz]'D) - Z An]m]8/12/112/)111]1)12:;1])12 — Z Anlml melnz:n]nz

nymy;npmy nymy ny

- Z An]mlpf;:I)nI — TI'(Ap(l)),

nymy



. 1 1
The reduced density operator: Pf,l),,,l an]nz;mlnz or P( ) = Tryp

\
\

partial trace on
the space ¥,

Time dependence of the density operator:

- density operator for a pure state: P, (1) = |¢(1)) (¢(7)]

d|e(t
From the time evolution equation: iA |q2([ ) = H(1)|¢(1)) é

i Py = 10 (I60) (@(0)]) = HO Py~ Pogy HO) = [HO), Py

For a mixture of states: p = "P,|@,)(®al =D PaP,.

— the evolution equation

- dp(1)
for the density operator.

= [H(1), p(1)]




Wave mechanics

— a state vector can be identified with an element ¢(r) of the Hilbert space L2 (@3) of
functions which are square-integrable in the three-dimensional space ®3. This state
vector is called the wave function - probability amplitude <r|$> for finding the
particle in the state |d> localized at position r. Normalization:

| drle@P=

Diagonalization of X and P and wave functions

- eigenvector of the position operator:  X|x) = x|x)

Pa Pa

[exp( = 1—) |x>] = exp( — 1—) (X4 al)|x) The vector exp(-iPa/h)|x>,
with a real, is an eigenvector

Pa of X with eigenvalue (x+a)

expl —i— !

= (x+ a)[ xp( )|x>] ﬁ and since a is arbitrary =all

real values of x between —c<
and +o< are eigenvalues of X.



i I
The spectrum of x is continuous = normalization: (*'|x) =6(x —x')

: .Pa
é translation operator:  exp (— 1?)|x) =|x+a)

- matrix elements of X: (X' X|x) = x(X'|x) = x6(x — x")

- more generally, for a functionof X:  (X'|F(X)|x) = F(x)(x'|x) = F(x) 6(x — x")

The completeness relation: f e vidoe (] =+

The projector P[a,b] onto the subspace of eigenvalues of X in the interval [a,b]:

Pla, b] = /b |x) dx (x|

a



Realization in L(Z)X(F@) — space of square-integrable functions on R

| > = a normalized vector of # representing a physical state:

o) =[x dx(xle)

o0

probability amplitude of finding
the particle localized at point x

<x|d> can be identified with a normalized function ¢(x) on L(Z)X(F@) such that:

[Xgo] (x) =x¢(x) [Pgo] (x) = —ih Z—f

- the scalar product: (X |¢) = /_: dx (x|x) {x|e) = /_: dx x*(x)e(x)

[ axleP =1

lo(x) |2 = |{(x|¢) |2 = probability density for the physical state of a particle moving
on the x axis.



Realization in L(Z)D(E@)

Let | p > be an eigenvector of P: Plp) = plp)

= the corresponding wave function xp(x)=<x| p> in the x-representation:

|

(r)y=—+=¢
Xp(%) 2h

ipx/h

00 1 o) . o X /
= normalization: /_ dx x, (x) x, (x) = ﬁ/_ dx exp [1 %] =8(p—p')

fors) 1 fo%s) v/
= completeness: /_ dp x,(x) x, (x) = mi/_ dp exp [i ‘D(XTX)] =06(x—x')

If |p> is the state vector of a particle, the “wave function in the p-representation”will be:

|
V2mh

...just the Fourier transform of the wave function ¢(x) = <x|d> in the x-representation.

50 = pley = (Pl dr(sle) =—— [ dxe " p(x)




= conversely, the wave function in the x-representation:

()= —
% _\/27Th

f dpe™" o (p)

The action of the operators X and P in the p-representation

X3](p) = ih% 3(p)

[P2](p) = po(p).

The Hamiltonian of the Schrodinger equation

The most general time-independent Hamiltonian compatible with Galilean invariance in

dimension d = 1: ,

P._
H=—+4V(X)
2m

. de(1))
From the time evolution equation of a state vector: ih dr = H|(1)) é



= the time-dependent Schrodinger equation:

Ip(x, 1) _ W 9?p(x, t)

ih
ot 2m  0x2

+ V(x)e(x, 1)

Since the potential V(x) is independent of time = stationary solutions:

 Et
_1_
h

e(0) =exp(—i=—)e(0).  Hle(0) = Ele(0))

= the time-independent Schrodinger equation:

hz 2
o 2 V0 ) = B




