

Hilbert spaces of finite dimension

 $\mathcal{H} \rightarrow$ a vector space of dimension N over complex numbers. $| \phi >, | \chi >, ... \in \mathcal{H}$

$$\lambda, \mu \in \mathbb{G} \Rightarrow \text{linear vector space: if } | \phi >, | \chi >, ... \in \mathcal{H} \Rightarrow \qquad \lambda | \varphi \rangle \equiv | \lambda \varphi \rangle \in \mathcal{H}$$

$$(| \varphi \rangle + \lambda | \chi \rangle) \in \mathcal{H}$$

Hilbert space ⇒ positive-definite scalar product:

$$\langle \chi | \varphi \rangle$$

$$\langle \chi | (\varphi_1 + \lambda \varphi_2) \rangle = \langle \chi | \varphi_1 \rangle + \lambda \langle \chi | \varphi_2 \rangle$$

$$\langle \chi | \varphi \rangle = \langle \varphi | \chi \rangle^* \qquad \langle \varphi | \varphi \rangle$$
 real!

 $\langle \chi | \varphi \rangle$ linear in $| \phi \rangle$, and antilinear in $| \chi \rangle$:

$$\langle (\chi_1 + \lambda \chi_2) | \varphi \rangle = \langle \chi_1 | \varphi \rangle + \lambda^* \langle \chi_2 | \varphi \rangle$$

The scalar product is positive-definite $\Rightarrow \quad \langle \varphi | \varphi \rangle = 0 \Longleftrightarrow | \varphi \rangle = 0$

 \rightarrow orthonormal basis { | n> } of an N-dim. Hilbert space:

$$\{|n\rangle\} \equiv \{|1\rangle, |2\rangle, \dots, |n\rangle, \dots, |N\rangle\} \qquad \langle n|m\rangle = \delta_{nm}$$

Any vector $| \phi \rangle \in \mathcal{H}$ can be decomposed on this basis with coefficients c_n which are the components of $| \phi \rangle$ in this basis:

$$|\varphi\rangle = \sum_{n=1}^{N} c_n |n\rangle$$
 $c_m = \langle m|\varphi\rangle$

scalar product:
$$\langle \chi | \varphi \rangle = \sum_{n,m=1}^N d_m^* \, c_n \langle m | n \rangle = \sum_{n=1}^N d_n^* \, c_n$$

DEF. the *norm* of
$$|\phi>$$
: $||\varphi||^2 = \langle \varphi | \varphi \rangle = \sum_{n=1}^N |c_n|^2 \ge 0$

The Schwarz inequality:

$$|\langle \chi | \varphi \rangle|^2 \le \langle \chi | \chi \rangle \langle \varphi | \varphi \rangle = ||\chi||^2 ||\varphi||^2$$

Hilbert space: linear vector space, complete and separable, on which the scalar product is defined.

Linear operators on \mathcal{H}

Linear, Hermitian, unitary operators

A linear operator A:

$$|A(\varphi + \lambda \chi)\rangle = |A\varphi\rangle + \lambda |A\chi\rangle$$

This operator is represented in a given basis $\{ \mid n > \}$ by a matrix with elements A_{nm} :

$$|A\varphi\rangle = \sum_{n=1}^{N} c_n |An\rangle$$

The components d_m of $|A\varphi\rangle = \sum_m d_m |m\rangle$:

$$d_{m} = \langle m|A\varphi \rangle = \sum_{n=1}^{N} c_{n} \langle m|An \rangle = \sum_{n=1}^{N} A_{mn} c_{n}$$

$$A_{mn} = \langle m | An \rangle$$

The *Hermitian conjugate* (or adjoint) of A, A[†], is defined: $\langle \chi | A^{\dagger} \varphi \rangle = \langle A \chi | \varphi \rangle = \langle \varphi | A \chi \rangle^*$

$$(A^{\dagger})_{mn} = A_{nm}^*$$

The Hermitian conjugate of the product AB of two operators is B⁺A⁺:

$$\langle \chi | (AB)^{\dagger} \varphi \rangle = \langle AB\chi | \varphi \rangle = \langle B\chi | A^{\dagger} \varphi \rangle = \langle \chi | B^{\dagger} A^{\dagger} \varphi \rangle$$

An operator satisfying $A = A^{\dagger}$ is termed *Hermitian* or *self-adjoint*.

A unitary operator: $UU^\dagger = U^\dagger U = I$ $U^{-1} = U^\dagger$

$$U^{-1} = U^{\dagger}$$

In a finite-dimensional space the necessary and sufficient condition for an operator U to be unitary is that it leaves unchanged the norm:

$$||U\varphi||^2 = ||\varphi||^2$$
 or $\langle U\varphi|U\varphi\rangle = \langle \varphi|\varphi\rangle \ \forall \varphi \in \mathcal{H}$

Proof:

$$\langle \varphi + \lambda \chi | \varphi + \lambda \chi \rangle = \langle \varphi | \varphi \rangle + |\lambda|^2 \langle \chi | \chi \rangle + 2 \operatorname{Re} \left(\lambda \langle \varphi | \chi \rangle \right)$$

$$\langle U(\varphi + \lambda \chi) | U(\varphi + \lambda \chi) \rangle = \langle U\varphi | U\varphi \rangle + |\lambda|^2 \langle U\chi | U\chi \rangle + 2\operatorname{Re}\left(\lambda \langle U\varphi | U\chi \rangle\right)$$

Subtracting the second of these equations from the first $\Rightarrow \langle U\varphi|U\varphi\rangle = \langle \varphi|\varphi\rangle \quad \forall \varphi \in \mathcal{H}$

 $\operatorname{Re}\left(\lambda\langle\varphi|\chi\rangle\right) = \operatorname{Re}\left(\lambda\langle U\varphi|U\chi\rangle\right) \quad \Longrightarrow \quad \langle U\varphi|U\chi\rangle = \langle\varphi|\chi\rangle \Rightarrow U^{\dagger}U = I$

$$\langle U\varphi|U\chi\rangle = \langle \varphi|\chi\rangle \Rightarrow U^{\dagger}U = I$$

Unitary operators change the orthonormal basis in \mathcal{H} : $|n'\rangle = |Un\rangle$

$$\langle m'|n'\rangle = \langle Um|Un\rangle = \langle m|n\rangle = \delta_{mn} = \delta_{m'n'}$$

The components of a vector:
$$c_n' = \langle n' | \varphi \rangle = \langle Un | \varphi \rangle = \langle n | U^\dagger \varphi \rangle = \sum_{m=1}^N U_{nm}^\dagger c_m$$

The transformation of matrix elements:

$$A'_{mn} = \langle m'|An'\rangle = \langle Um|AUn\rangle = \langle m|U^{\dagger}AUn\rangle = \sum_{k,l=1}^{N} U_{mk}^{\dagger} A_{kl} U_{ln}$$

Projection operators and Dirac notation

 $\mathcal{H}_1 \to \text{subspace of } \mathcal{H}$, and \mathcal{H}_2 is the orthogonal subspace. Any vector $| \phi \rangle$ can be decomposed uniquely:

$$|\varphi\rangle = |\varphi_1\rangle + |\varphi_2\rangle, \quad |\varphi_1\rangle \in \mathcal{H}_1, \quad |\varphi_2\rangle \in \mathcal{H}_2, \quad \langle \varphi_1|\varphi_2\rangle = 0.$$

The projector P_1 onto \mathcal{H}_1 is defined by its action on an arbitrary vector $|\phi\rangle \subseteq \mathcal{H}$:

$$|\mathcal{P}_1arphi
angle=|arphi_1
angle$$

Projectors \rightarrow linear and hermitian operators: if $|\chi\rangle = |\chi_1\rangle + |\chi_2\rangle$

$$\langle \chi | \mathcal{P}_1 \varphi \rangle = \langle \chi | \varphi_1 \rangle = \langle \chi_1 | \varphi_1 \rangle,$$
$$\langle \chi | \mathcal{P}_1^{\dagger} \varphi \rangle = \langle \mathcal{P}_1 \chi | \varphi \rangle = \langle \chi_1 | \varphi \rangle = \langle \chi_1 | \varphi_1 \rangle.$$

$$|\mathcal{P}_1^2 \varphi\rangle = |\mathcal{P}_1 \varphi_1\rangle = |\varphi_1\rangle \Rightarrow \mathcal{P}_1^2 = \mathcal{P}_1$$
 \Rightarrow eigenvalues 0 or 1.

Every linear operator satisfying: $\mathcal{P}_1^{\dagger}\mathcal{P}_1=\mathcal{P}_1^{}\Rightarrow \mathsf{PROJECTOR}.$

Proof: $\mathcal{P}_1^{\dagger} = \mathcal{P}_1 \implies$ the vectors $P_1 | \phi >$ form a vector subspace \mathcal{H}_1 .

$$|\varphi\rangle = |\mathcal{P}_1\varphi\rangle + (|\varphi\rangle - |\mathcal{P}_1\varphi\rangle) = |\mathcal{P}_1\varphi\rangle + |\varphi_2\rangle$$

 $|arphi_2
angle$ is orthogonal to every vector $|\mathcal{P}_1\chi
angle$

$$\langle \varphi - \mathcal{P}_1 \varphi | \mathcal{P}_1 \chi \rangle = \langle \mathcal{P}_1 \varphi - \mathcal{P}_1^2 \varphi | \chi \rangle = 0.$$

Dirac notation:

 $|\phi\rangle \in \mathcal{H} \rightarrow \text{``ket''} \text{ and } \langle \phi| \rightarrow \text{'`bra''}. \text{ Instead of } |A \phi\rangle, \text{ in this notation we use } A|\phi\rangle. \text{ The scalar product:}$

$$\langle \chi | A\varphi \rangle \to \langle \chi | A | \varphi \rangle$$
$$\langle \lambda \varphi | \chi \rangle = \lambda^* \langle \varphi | \chi \rangle$$

Projectors:

$$\mathcal{P}_{arphi} = |arphi
angle\langlearphi|$$

decomposition:

$$|\chi\rangle = |\varphi\rangle\langle\varphi|\chi\rangle + (|\chi\rangle - |\varphi\rangle\langle\varphi|\chi\rangle) = |\varphi\rangle\langle\varphi|\chi\rangle + |\chi_{\perp}\rangle = \mathcal{P}_{\varphi}|\chi\rangle + |\chi_{\perp}\rangle$$

If the vectors: $\{|1\rangle,\ldots,|M\rangle\},\ M\leq N\$ form an orthonormal basis of the subspace $\mathcal{H}_1\Rightarrow$

$$\mathcal{P}_1 = \sum_{n=1}^M |n\rangle\langle n|.$$

If M = N we obtain the decomposition of the identity operator:

$$I = \sum_{n=1}^{N} |n\rangle\langle n|$$

Spectral decomposition of Hermitian operators

Diagonalization of a Hermitian operator

Let A be a linear operator. If there exists a vector $| \phi \rangle$ and a complex number α such that:

$$A|\varphi\rangle = a|\varphi\rangle$$

 \Rightarrow $| \phi >$ is an <u>eigenvector</u>, and a an <u>eigenvalue</u> of the operator A. The eigenvalues are solutions of the equation:

$$\det(A - aI) = 0$$

Theorem. The eigenvalues of a Hermitian operator are real and the eigenvectors corresponding to two different eigenvalues are orthogonal.

Proof:
$$\langle \varphi | A | \varphi \rangle = \langle \varphi | a \varphi \rangle = a ||\varphi||^2$$

= $\langle A \varphi | \varphi \rangle = \langle a \varphi | \varphi \rangle = a^* ||\varphi||^2$ $\boxed{a = a^*}$

$$A|\varphi\rangle = a|\varphi\rangle$$

$$A|\chi\rangle = b|\chi\rangle$$

$$\langle \chi|A\varphi\rangle = a\langle \chi|\varphi\rangle = \langle A\chi|\varphi\rangle = b\langle \chi|\varphi\rangle$$

$$\langle \chi|\varphi\rangle = 0 \text{ if } a \neq b$$

The eigenvectors of a Hermitian operator normalized to unity form an orthonormal basis of \mathcal{H} if the eigenvalues are all distinct.

If a_n is a multiple root of det(A-aI)=0, the eigenvalue a_n is then said to be degenerate.

Theorem. If an operator A is Hermitian, it is always possible to find a (nonunique) unitary matrix U such that $U^{-1}AU$ is a diagonal matrix, where the diagonal elements are the eigenvalues of A, each of which appears a number of times equal to its multiplicity.

Let a_n be a degenerate eigenvalue and let G(n) be its multiplicity. Then there exist G(n) independent eigenvectors corresponding to this eigenvalue. These eigenvectors span a vector subspace of dimension G(n) called the *subspace of the eigenvalue* a_n , in which we can find a (nonunique) orthonormal basis

$$|n, r\rangle, r = 1, \dots, G(n)$$

 $A|n, r\rangle = a_n|n, r\rangle$

The projector onto this vector subspace: $\mathcal{P}_n = \sum_{i=1}^n |n,r\rangle\langle n,r|$

$$\sum_{n} \mathcal{P}_{n} = \sum_{n} \sum_{r=1}^{G(n)} |n, r\rangle \langle n, r| = I$$

Let the vector
$$|\phi\rangle \in \mathcal{H} \Rightarrow$$

Let the vector
$$|\phi\rangle \in \mathcal{H} \Rightarrow A|\varphi\rangle = \sum_{n} A\mathcal{P}_{n}|\varphi\rangle = \sum_{n} a_{n}\mathcal{P}_{n}|\varphi\rangle$$

$$A = \sum_{n} a_{n} \mathcal{P}_{n} = \sum_{n} \sum_{r=1}^{G(n)} |n, r\rangle a_{n} \langle n, r|$$
Spectral decomposition of the operator

of the operator A.

Complete sets of compatible operators

Two operators A and B commute if AB = BA, and in this case their *commutator* [A,B] vanishes. [A, B] = AB - BA

Theorem. Let A and B be two Hermitian operators such that [A, B] = 0. We can then find a basis of **%** constructed from eigenvectors common to A and B.

 \Rightarrow an ensemble of Hermitian operators $A_1,...A_M$ that commute pairwise and whose eigenvalues unambiguously define the vectors of a basis of $\mathcal R$ is called a *complete set of* compatible operators (or a complete set of commuting operators).

Unitary operators and Hermitian operators

Theorem. (a) The eigenvalues an of a unitary operator have modulus unity: $a_n = \exp(i\alpha_n)$, α_n real. (b) The eigenvectors corresponding to two different eigenvalues are orthogonal. (c) The spectral decomposition of a unitary operator is written as a function of pairwise orthogonal projectors P_n as

$$U = \sum_{n} a_{n} \mathcal{P}_{n} = \sum_{n} e^{i\alpha_{n}} \mathcal{P}_{n} \qquad \sum_{n} \mathcal{P}_{n} = I$$

Let
$$A=\sum_n a_n\mathcal{P}_n$$
 be a Hermitian operator $\Rightarrow U=\sum_n \mathrm{e}^{\mathrm{i}\alpha a_n}\mathcal{P}_n=\mathrm{e}^{\mathrm{i}\alpha A}$ unitary operator.

Operator-valued functions

A function f(A) of an operator?

1) If the operator A can be diagonalized: $A = XDX^{-1}$, where D is a diagonal matrix whose elements are d_n . Let us assume that a function f is defined by a Taylor series which converges in a certain region of the complex plane |z| < R:

$$f(z) = \sum_{p=0}^{\infty} c_p z^p$$

$$\Rightarrow \text{ operator-valued function: } f(A) = \sum_{p=0}^{\infty} c_p A^p = \sum_{p=0}^{\infty} c_p X D^p X^{-1} = X \left[\sum_{p=0}^{\infty} c_p D^p \right] X^{-1}$$

diagonal matrix with elements f(d_n), well defined if $|d_n| < R \forall n$.

The exponential of an operator:

$$\exp A = \sum_{p=0}^{\infty} \frac{A^p}{p!}$$

Generally:

$$\exp A \exp B \neq \exp B \exp A$$

A sufficient (but not necessary!) condition for the equality to hold is that A and B commute.

For a Hermitian operator A whose spectral decomposition is given by: $A = \sum a_n \mathcal{P}_n$

any function of A can be defined:
$$f(A) = \sum_{n} f(a_n) \mathcal{P}_n$$

State vectors and physical properties

The superposition principle

The space of states: the properties of a quantum system are completely defined by its state vector $| \phi \rangle \rightarrow$ an element of a complex Hilbert space \mathcal{H} (space of states).

- \rightarrow normalized state vector: $||\varphi||^2 = \langle \varphi | \varphi \rangle = 1$
- \Rightarrow linearity of the space of states \Rightarrow *superposition principle*: if $| \phi \rangle$ i $| \chi \rangle \in \mathcal{H}$ are state vectors \Rightarrow

$$|\psi\rangle = \frac{\lambda|\varphi\rangle + \mu|\chi\rangle}{||\lambda|\varphi\rangle + \mu|\chi\rangle||} \in \mathcal{H}$$
 is a state vector (λ , μ are complex numbers).

Probability amplitudes and probabilities: if $|\phi\rangle$ i $|\chi\rangle \in \mathcal{H}$ are state vectors of a quantum system, there exists a probability amplitude of finding $|\phi\rangle$ in the state $|\chi\rangle$ given by the scalar product on \mathcal{H} :

$$\mathcal{H}$$
: $a(\varphi \to \chi) = \langle \chi | \varphi \rangle$

$$p(\varphi \to \chi) = |a(\varphi \to \chi)|^2 = |\langle \chi | \varphi \rangle|^2$$

Physical properties and measurement

<u>Physical properties and operator</u>: with every physical property (observable) \mathcal{A} there exists an associated Hermitian operator A that acts on the Hilbert space of states.

Example: an observable $\mathcal{A} \rightarrow$ Hermitian operator A with nondegenerate eigenvalues:

$$A = \sum_{n} |n\rangle a_n \langle n|$$

If the quantum system is in a state $|\phi\rangle \equiv |n\rangle$, the value of the operator A in this states is a_n , that is, the physical property \mathcal{A} takes the exact numerical value a_n .

 \rightarrow in the general case we define the expectation value of the observable \mathcal{A} in the state $|\phi\rangle$

$$\langle A \rangle_{\varphi} = \lim_{\mathcal{N} \to \infty} \frac{1}{\mathcal{N}} \sum_{p=1}^{\mathcal{N}} \mathcal{A}_p$$
 result of the p-th measurement number of measurements

The expectation value is a function of A and $|\phi\rangle$:

$$\langle A \rangle_{\varphi} = \sum_{n} \mathsf{p}_{n} a_{n} = \sum_{n} \langle \varphi | n \rangle a_{n} \langle n | \varphi \rangle = \langle \varphi | A | \varphi \rangle$$

→ general case with degenerate eigenvalues:

$$|\varphi\rangle = \sum_{n,r} |n,r\rangle\langle n,r|\varphi\rangle = \sum_{n,r} c_{nr}|n,r\rangle$$

 \rightarrow the probability of observing the eigenvalue a_n :

$$\begin{aligned} \mathbf{p}(a_n) &= \sum_r |c_{nr}|^2 = \sum_r \langle \varphi | n, r \rangle \langle n, r | \varphi \rangle \\ &= \langle \varphi | \mathcal{P}_n | \varphi \rangle, \end{aligned} \qquad \qquad \mathcal{P}_n = \sum_r |n, r \rangle \langle n, r | \quad \underset{\text{the subspace a}_n}{\Rightarrow} \text{projector on the subspace a}_n \end{aligned}$$

the expectation value $\langle A \rangle_{\varphi}$ of the physical property ${\mathcal A}$ of the system in the state $| \, \varphi \rangle$:

$$\langle A \rangle_{\varphi} = \sum_{n} a_{n} \mathsf{p}(a_{n}) = \sum_{n,r} \langle \varphi | n, r \rangle \, a_{n} \, \langle n, r | \varphi \rangle$$

$$\langle A \rangle_\varphi = \langle \varphi | A | \varphi \rangle$$

The tensor product of two vector spaces

Two QM systems: the corresponding spaces of states \mathcal{H}_1^N and \mathcal{H}_2^M , of dimensions N and M.

$$|arphi
angle\in\mathcal{H}_1^N$$
 $|\chi
angle\in\mathcal{H}_2^M$

 $\{|\varphi\rangle, |\chi\rangle\} \rightarrow$ a vector that belongs to a space of dimension NM \Rightarrow tensor product of spaces:

$$\mathcal{H}_1^N \otimes \mathcal{H}_2^M$$

Orthonormal bases $|n\rangle \in \mathcal{H}_1^N$ and $|m\rangle \in \mathcal{H}_2^M$:

$$|\varphi\rangle = \sum_{n=1}^{N} c_n |n\rangle, \quad |\chi\rangle = \sum_{m=1}^{M} d_m |m\rangle$$

 $\mathcal{H}_1^N \otimes \mathcal{H}_2^M \to \text{vector space of dimension NM on which an orthonormal basis is defined: } \{|n\rangle, |m\rangle\} \equiv |n\rangle \otimes |m\rangle$

$$\langle n' \otimes m' | n \otimes m \rangle = \delta_{n'n} \delta_{m'm}$$

The tensor product of the vectors $|\phi\rangle$ i $|\chi\rangle$:

$$|\varphi \otimes \chi\rangle = \sum_{n,m} c_n d_m |n \otimes m\rangle$$

$$\Rightarrow$$
 linearity: $|\varphi\otimes(\chi_1+\lambda\chi_2)\rangle=|\varphi\otimes\chi_1\rangle+\lambda|\varphi\otimes\chi_2\rangle$ $|(\varphi_1+\lambda\varphi_2)\otimes\chi\rangle=|\varphi_1\otimes\chi\rangle+\lambda|\varphi_2\otimes\chi\rangle$

The tensor product is independent of the choice of basis. Let the new bases of \mathcal{H}_1^N i \mathcal{H}_2^M be defined by the unitary transformations:

$$|i\rangle = \sum_{n} R_{in} |n\rangle, \quad |j\rangle = \sum_{m} S_{jm} |m\rangle$$
 $R^{-1} = R^{\dagger}$ $S^{-1} = S^{\dagger}$

$$|i\otimes j\rangle = \sum_{n,m} R_{in} S_{jm} |n\otimes m\rangle$$

$$|\varphi\rangle = \sum_{i=1}^{N} \overline{c}_i |i\rangle, \quad |\chi\rangle = \sum_{j=1}^{M} \overline{d}_j |j\rangle$$

$$\sum_{i,j} \overline{c}_i \overline{d}_j | i \otimes j \rangle = | \varphi \otimes \chi \rangle$$

<u>Postulate</u>: The space of states of two interacting quantum systems is: $\mathcal{H}_1^N \otimes \mathcal{H}_2^M$

The most general state vector: $|\Phi\rangle = \sum_{n,m} b_{nm} |n \otimes m\rangle$

 \rightarrow in general, it cannot be written as a tensor product $|\phi \otimes \chi\rangle$, except for independent systems. In that case $b_{nm}=c_nd_m$. State vectors which can be written as a tensor product form a subset (but not a subspace) of $\mathcal{X}_1^N \otimes \mathcal{X}_2^M$. A state vector which cannot be written in the form of a tensor product is termed *entangled state*.

The tensor product $C = A \otimes B$ of two linear operators A and B acting respectively in the spaces \mathcal{H}_1^N i \mathcal{H}_2^M is defined by its action on the tensor product vector $|\phi \otimes \chi\rangle$:

$$(A \otimes B)|\varphi \otimes \chi\rangle = |A\varphi \otimes B\chi\rangle$$

 \Rightarrow its matrix elemnts in the basis $|n \otimes m\rangle$

$$\langle n' \otimes m' | A \otimes B | n \otimes m \rangle = A_{n'n} B_{m'm}$$

In general, an operator C acting on $\mathcal{H}_1^N \otimes \mathcal{H}_2^M$ will not be of the form $A \otimes B$:

$$\langle n' \otimes m' | C | n \otimes m \rangle = C_{n'm';nm}$$

Special case: $A=I_1$ or $B=I_2$ (identity operators on \mathcal{H}_1^N i \mathcal{H}_2^M)

$$(A \otimes I_2)|\varphi \otimes \chi\rangle = |A\varphi \otimes \chi\rangle, \quad (I_1 \otimes B)|\varphi \otimes \chi\rangle = |\varphi \otimes B\chi\rangle$$

Matrix elements:

$$\langle n' \otimes m' | A \otimes I_2 | n \otimes m \rangle = A_{n'n} \delta_{m'm}, \quad \langle n' \otimes m' | I_1 \otimes B | n \otimes m \rangle = \delta_{n'n} B_{m'm}$$

If $|\phi\rangle$ is an eigenvector of the operator A: $A|\phi\rangle = a|\phi\rangle \Rightarrow |\phi\otimes\chi\rangle$ is an eigenvector of the operator $A\otimes I_2$: $A\otimes I_2|\phi\otimes\chi\rangle = a|\phi\otimes\chi\rangle$

Notation:
$$A|\varphi \otimes \chi\rangle = a|\varphi \otimes \chi\rangle$$

$$A|\varphi\chi\rangle = a|\varphi\chi\rangle$$

The density operator

Definition and properties

$$\begin{split} |\Psi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2 \ \to & \text{ if } \ |\psi\rangle = |\varphi_1 {}^\otimes \varphi_2 \rangle \text{, the state vector of system } \textcircled{1} \text{ is } \ |\varphi_1 \rangle \text{. In the general case when } \ |\psi\rangle \text{ is not a tensor product but rather an } \underline{\text{entangled state}}, \\ & \text{it is not possible to associate a definite state vector in } \mathscr{H}_1 \text{ to the system } \\ \textcircled{1} \text{ or a vector in } \mathscr{H}_2 \text{ to } \textcircled{2} \text{.} \end{split}$$

- i) when a quantum system can be described by a vector in the Hilbert space of states ⇒ a *pure state* (complete information about the system is available)
- ii) when the information on the system is incomplete ⇒ a *mixture* (the system is described by a *density operator*)

Pure state:
$$|arphi\rangle\in\mathcal{H}$$

$$ightarrow$$
 the projector onto $|\phi
angle$: $\mathcal{P}_{\varphi} = |\varphi
angle \langle \varphi |$

is invariant with respect to a phase transformation: $|arphi
angle o {
m e}^{{
m i}lpha}\,|arphi
angle$

 $\{|n\rangle\} \rightarrow$ an orthonormal basis of $\mathcal{H} \Rightarrow$ the expectation value of an observable:

$$\begin{split} \langle A \rangle &= \langle \varphi | A | \varphi \rangle = \sum_{n,m} \langle \varphi | n \rangle \langle n | A | m \rangle \langle m | \varphi \rangle \\ &= \sum_{n,m} \langle m | \varphi \rangle \langle \varphi | n \rangle \langle n | A | m \rangle \\ &= \sum_{m} \langle m | \mathcal{P}_{\varphi} A | m \rangle = \mathrm{Tr}(\mathcal{P}_{\varphi} A). \end{split}$$

Mixture of quantum states:

 $p_{\alpha} \ (0 \le p_{\alpha} \le 1, \sum_{\alpha} p_{\alpha} = 1) \rightarrow \text{probability that the system is in the state } |\phi_{\alpha}\rangle$. It is not possible to associate a definite state vector of \mathcal{X} to the system, but only a mixture of states with corresponding probabilities.

DEF. Density operator (state operator)
$$\rho = \sum_{\alpha} \mathsf{p}_{\alpha} |\varphi_{\alpha}\rangle \langle \varphi_{\alpha}| = \sum_{\alpha} \mathsf{p}_{\alpha} \mathcal{P}_{\varphi_{\alpha}}$$

$$\langle A \rangle = \sum_{\alpha} \mathsf{p}_{\alpha} \langle A \rangle_{\alpha} = \sum_{\alpha} \mathsf{p}_{\alpha} \langle \varphi_{\alpha} | A | \varphi_{\alpha} \rangle = \mathsf{Tr}(\rho A)$$

Properties: $\rightarrow \rho$ is Hermitian $\rho = \rho^{\dagger}$

$$\rightarrow$$
 Tr ρ = 1

 \rightarrow p is a positive operator (Hermitian and has positive eigenvalues)

$$\langle \varphi | \rho | \varphi \rangle \ge 0$$

 \rightarrow a necessary and sufficient condition for ρ to describe a pure state is $\rho^2 = \rho$.

→ spectral decomposition:

$$\rho = \sum_{n} \mathsf{p}_{n} |n\rangle \langle n|$$

The reduced density operator

A density operator ρ acting in the space $\mathcal{H}_1 \otimes \mathcal{H}_2$. What is the density operator of the system ①? An observable $C = A \otimes I_2$ which depends only on ① \Rightarrow define a density operator $\rho^{(1)}$ acting in \mathcal{H}_1 such that:

$$\langle A \rangle = \operatorname{Tr} \left(\rho^{(1)} A \right)$$

$$\langle A \otimes I_2 \rangle = \operatorname{Tr}([A \otimes I_2] \rho) = \sum_{n_1 m_1; n_2 m_2} A_{n_1 m_1} \delta_{n_2 m_2} \rho_{m_1 m_2; n_1 n_2} = \sum_{n_1 m_1} A_{n_1 m_1} \sum_{n_2} \rho_{m_1 n_2; n_1 n_2}$$

$$= \sum_{n_1 m_1} A_{n_1 m_1} \rho_{m_1 n_1}^{(1)} = \operatorname{Tr}(A \rho^{(1)}).$$

The *reduced* density operator:

$$ho_{n_1m_1}^{(1)} = \sum_{n_2} \rho_{n_1n_2;m_1n_2} \text{ or } \rho^{(1)} = \text{Tr}_2 \rho$$

partial trace on the space \mathcal{H}_2

Time dependence of the density operator:

ightarrow density operator for a pure state: $\mathcal{P}_{\varphi}(t) = |\varphi(t)\rangle\langle\varphi(t)|$

From the time evolution equation: $i\hbar \frac{\mathrm{d}|\varphi(t)\rangle}{\mathrm{d}t} = H(t)|\varphi(t)\rangle$

$$\mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}\,\mathcal{P}_{\varphi(t)} = \mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}\left(|\varphi(t)\rangle\langle\varphi(t)|\right) = H(t)\mathcal{P}_{\varphi(t)} - \mathcal{P}_{\varphi(t)}H(t) = \left[H(t),\mathcal{P}_{\varphi(t)}\right]$$

For a mixture of states: $ho=\sum_{\alpha}\mathsf{p}_{\alpha}|\varphi_{\alpha}\rangle\langle\varphi_{\alpha}|=\sum_{\alpha}\mathsf{p}_{\alpha}\mathcal{P}_{\varphi_{\alpha}}$

$$i\hbar \frac{d\rho(t)}{dt} = [H(t), \rho(t)]$$

 $i\hbar \frac{d\rho(t)}{dt} = [H(t), \rho(t)]$ \rightarrow the evolution equation for the density operator. for the density operator.

Wave mechanics

 \rightarrow a state vector can be identified with an element $\phi(\mathbf{r})$ of the Hilbert space $L^2_{\mathbf{r}}(\mathbb{R}^3)$ of functions which are square-integrable in the three-dimensional space \mathbb{R}^3 . This state vector is called the *wave function* \rightarrow probability amplitude $\langle \mathbf{r} | \phi \rangle$ for finding the particle in the state $|\phi\rangle$ localized at position \mathbf{r} . Normalization:

$$\int_{-\infty}^{\infty} \mathrm{d}^3 r \, |\varphi(\vec{r})|^2 = 1$$

Diagonalization of X and P and wave functions

 \rightarrow eigenvector of the position operator: $X|x\rangle = x|x\rangle$

$$X\left[\exp\left(-i\frac{Pa}{\hbar}\right)|x\rangle\right] = \exp\left(-i\frac{Pa}{\hbar}\right)(X+aI)|x\rangle$$
$$= (x+a)\left[\exp\left(-i\frac{Pa}{\hbar}\right)|x\rangle\right]$$

The vector $\exp(-iPa/\hbar)|x>$, with a real, is an eigenvector of X with eigenvalue (x+a), and since a is arbitrary \Rightarrow all real values of x between $-\infty$ and $+\infty$ are eigenvalues of X.

The spectrum of x is continuous \Rightarrow normalization:

$$\langle x'|x\rangle = \delta(x-x')$$

translation operator: $\exp\left(-i\frac{Pa}{\hbar}\right)|x\rangle = |x+a\rangle$

$$\rightarrow$$
 matrix elements of X: $\langle x'|X|x\rangle = x\langle x'|x\rangle = x\,\delta(x-x')$

$$\rightarrow$$
 more generally, for a function of X: $\langle x'|F(X)|x\rangle = F(x)\langle x'|x\rangle = F(x)\,\delta(x-x')$

The completeness relation:
$$\int_{-\infty}^{\infty} |x\rangle \, dx \, \langle x| = I$$

The projector P[a,b] onto the subspace of eigenvalues of X in the interval [a,b]:

$$\mathcal{P}[a,b] = \int_{a}^{b} |x\rangle \,\mathrm{d}x \,\langle x|$$

Realization in $L^{(2)}_{x}(\mathbb{R}) \rightarrow \text{space of square-integrable functions on } \mathbb{R}$

 $|\phi\rangle \rightarrow$ a normalized vector of \mathcal{H} representing a physical state:

$$|\varphi\rangle = \int_{-\infty}^{\infty} |x\rangle \,\mathrm{d}x \,\langle x|\varphi\rangle$$
 probability amplitude of finding the particle localized at point x

<x| $\phi>$ can be identified with a normalized function $\phi(x)$ on $L^{(2)}_{x}(\mathbb{R})$ such that:

$$[X\varphi](x) = x\varphi(x)$$

$$[P\varphi](x) = -i\hbar \frac{\partial \varphi}{\partial x}$$

$$\Rightarrow$$
 the scalar product: $\langle \chi | \varphi \rangle = \int_{-\infty}^{\infty} \mathrm{d}x \, \langle \chi | x \rangle \langle x | \varphi \rangle = \int_{-\infty}^{\infty} \mathrm{d}x \, \chi^*(x) \varphi(x)$
$$\int_{-\infty}^{\infty} \mathrm{d}x \, |\varphi(x)|^2 = 1$$

 $|\varphi(x)|^2 = |\langle x|\varphi\rangle|^2$ \Rightarrow probability density for the physical state of a particle moving on the x axis.

Realization in $L^{(2)}_{p}(\mathbb{R})$

Let $|p\rangle$ be an eigenvector of P: $P|p\rangle = p|p\rangle$

 \Rightarrow the corresponding wave function $\chi_p(x) = \langle x | p \rangle$ in the x-representation:

$$\chi_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}$$

$$\Rightarrow \text{normalization:} \qquad \int_{-\infty}^{\infty} \mathrm{d}x \, \chi_{p'}^*(x) \chi_p(x) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \mathrm{d}x \, \exp\left[\mathrm{i} \, \frac{(p-p')x}{\hbar}\right] = \delta(p-p')$$

$$\Rightarrow \text{completeness:} \qquad \int_{-\infty}^{\infty} \mathrm{d}p \, \chi_p(x) \chi_p^*(x') = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \mathrm{d}p \, \exp\left[\mathrm{i} \, \frac{p(x-x')}{\hbar}\right] = \delta(x-x')$$

If $|\phi\rangle$ is the state vector of a particle, the "wave function in the p-representation" will be:

$$\tilde{\varphi}(p) = \langle p | \varphi \rangle = \int_{-\infty}^{\infty} \langle p | x \rangle \, \mathrm{d}x \, \langle x | \varphi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \mathrm{d}x \, \mathrm{e}^{-\mathrm{i}px/\hbar} \, \varphi(x)$$

...just the Fourier transform of the wave function $\phi(x) = \langle x | \phi \rangle$ in the x-representation.

 \Rightarrow conversely, the wave function in the x-representation:

$$\varphi(x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} dp \, e^{ipx/\hbar} \, \tilde{\varphi}(p)$$

The action of the operators *X* and *P* in the *p*-representation

$$\left[X\tilde{\varphi}\right](p) = i\hbar \frac{\partial}{\partial p}\,\tilde{\varphi}(p)$$

$$[P\tilde{\varphi}](p) = p\,\tilde{\varphi}(p).$$

The Hamiltonian of the Schrödinger equation

The most general time-independent Hamiltonian compatible with Galilean invariance in dimension d = 1:

$$H = \frac{P^2}{2m} + V(X)$$

From the time evolution equation of a state vector:

$$i\hbar \frac{\mathrm{d}|\varphi(t)\rangle}{\mathrm{d}t} = H|\varphi(t)\rangle$$

⇒ the time-dependent Schrödinger equation:

$$i\hbar \frac{\partial \varphi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \varphi(x,t)}{\partial x^2} + V(x)\varphi(x,t)$$

Since the potential V(x) is independent of time \Rightarrow stationary solutions:

$$|\varphi(t)\rangle = \exp\left(-i\frac{Et}{\hbar}\right)|\varphi(0)\rangle, \quad H|\varphi(0)\rangle = E|\varphi(0)\rangle$$

⇒ the time-independent Schrödinger equation:

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \varphi(x) = E\varphi(x)$$