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1 Introduction

The HF solver that you have developed is the starting point to study a number of different
approximations to the many-body problem. In phase III of the computational projects, we
propose that you try and implement one of the following extensions beyond HF.

• Implement the density matrix expansion of the Minnesota potential. The goal here is
to benchmark the DME – which produces a functional of the local density – against
the exact result.

• Solve the HFB equations in spherical symmetry. The level of difficulty should not be
too high if you understand your HF solver well. In addition to doubling the size of
the matrix to diagonalize and dealing with the pairing tensor, one technical difficulty
is to determine the Fermi energy by solving a Newton-like method.

• Solve the RPA equations in spherical symmetry. It is also relatively simple, but you
will need to pay attention to your implementation, since naive brute force could make
your code very slow.

• Solve the deformed HF equations. This is probably the most ambitious project: you
need to set up new quadrature rules and basis functions, and put up some significant
work into designing your implementation, else your code will run for ever...

2 Building EDFs at the LDA and DME level

As discussed in the lectures, the density matrix expansion (DME) is a promising technique
to build a quasi-local EDF starting from the underlying NN and NNN interactions, working
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either at the Hartree-Fock (HF) or Brueckner-Hartree-Fock (BHF) level. In the following,
we outline the basic steps to derive and implement quasi-local EDF approximations to the
fully non-local HF calculations you implemented in the first two phases of the project.

Local Density Approximation to Hartree-Fock The LDA gives the simplest path
for deriving a local EDF starting from a microscopic hamiltonian. In the most sophisti-
cated implementation, one only applies the LDA to the non-local exchange (Fock) energy,
treating the finite-range Hartree contribution exactly since it only probes the diagonal
densities. With your HF code, it is no problem in principle to treat the Hartree term
exactly. However, this requires that one treats the direct and exchange matrix elements of
the anti-symmetrized NN potential separately. Unfortunately, the “black box” code used
to generate the m-scheme and J-scheme matrix elements has the antisymmetry built in,
making it hard to separate the direct and exchange contributions without digging deep
into the workings of the code. Therefore, for the present problem you will apply the LDA
to both the Hartree and Fock energy contributions to avoid this technicality.

At the heart of the LDA is a calculation of the energy/particle of the infinite homogenous
system– pure neutron matter in the present problem. Here is an outline of the steps you
need to do this.

1. Starting from the general expression for the HF interaction energy, show that one
gets the following expression for the Minnesota potential for spin-saturated systems
(i.e., systems with vanishing spin-vector density matrices)

EHF
int = EH + EF (1)

EH =
1

2

∫
dR

∫
drVC(r)ρ(R + r/2)ρ(R− r/2)

EF =
1

2

∫
dR

∫
drVC(r)ρ(R + r/2,R− r/2)ρ(R− r/2,R + r/2) ,

where VC = 1
4
(VR + VS).

2. Now apply this to the system of infinite homogenous neutron matter (A→∞, V →
∞, ρ → const), remembering that ρ(r1, r2) = ρ ρSL(kF r), where ρSL(x) = 3j1(x)/x.
This gives the following expression for the HF interaction energy per particle

EHF
int

A
≡ eHF (ρ) =

1

2
ρ

∫
drVC(r) +

1

2
ρ

∫
drρ2

SL(kF r)VC(r) . (2)

3. Now that you have the HF energy for the infinite system, the LDA amounts to
defining the interaction energy piece of the EDF as

Eint[ρ] ≡
∫
drρ(r)eHF (ρ(r)) . (3)
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The LDA approximation to the HF s.p. hamiltonian is then purely local, and is given
by

h(r) = h0(r) +
δ

δρ(r)
Eint[ρ] ≡ h0(r) + ΓLDA(r) , (4)

where h0 is the HO hamiltonian and the s.p. field ΓLDA is given by

ΓLDA(r) =
δ

δρ(r)
Eint[ρ] = eHF (ρ(r)) + ρ(r)

∂

∂ρ
eHF (ρ)|ρ(r) (5)

Note that ΓLDA(r) depends on the density, so the resulting s.p. equations need to be
solved self-consistently as in the original HF calculations. You can use your existing
HF code to do this, once you have implemented functions to calculate eHF (ρ) and
ΓLDA(r), and to take matrix elements of ΓLDA(r) on the HO basis

〈nljm|ΓLDA|n′ljm〉 =

∫
r2drRnl(r)ΓLDA(r)Rn′l(r) (6)

4. Once you have reached self-consistency, the LDA approximation to the HF energy is
evaluated as

EHF
LDA =

A∑
i=1

〈φi|h0|φi〉+ Eint[ρ] , (7)

where φi are the self-consistent HF-LDA orbitals and ρ is the self-consistent density

ρ(r) =
A∑
i=1

φ∗i (r)φi(r) (8)

Density Matrix Expansion - The DME approximation to HF looks very similar to the
simple LDA outlined above, but now with explicit gradient corrections and dependence
on the local kinetic energy density, τ(R) = ∇1 · ∇2ρ(r1, r2)

∣∣
r1=r2=R

. As with the LDA
calculation, we will not treat the full finite-range Hartree energy exactly. Rather, we will
apply a naive Taylor expansion to map the Hartree energy into a Skyrme-like form. Here
are the steps to implement the DME approximation to HF:

1. In the non-local Fock energy expression, plug in the DME expression for the density
matrix

ρ(R + r/2,R− r/2) ≈ π0(kF r)ρ(R) +
r2

6
π2(kF r)

[1
4
∇2ρ− τ +

3

5
k2
Fρ
]
, (9)

keeping only terms to 2nd-order in small quantities (i.e., treat the terms involving π2

as 2nd-order), so that

ρ2(R + r/2,R− r/2) ≈ π2
0ρ

2 +
r2π0π2

3

[
ρ∇2ρ

4
− ρτ +

3

5
k2
Fρ

2

]
(10)
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2. Simplify your expression for EF [ρ, τ,∇2ρ] to get it into the form

EF ≈
∫
dR

{
Cρρρ2 + Cρτρτ + Cρ∇2ρρ∇2ρ

}
. (11)

Your expressions for the density-dependent couplings should take the form as integrals
of the π-functions over the finite range NN potential. For example, you should find

Cρρ =

∫
drVC(r)

[
π2

0(kF r) +
1

5
(kF r)

2π0(kF r)π2(kF r)
]

(12)

In both Negele-Vautherin and PSA flavors of the DME, you should be able to get
analytical expressions for all couplings. As a reminder, the PSA π-functions are all
equal to ρSL, while the NV ones are given by π0(x) = ρSL(x), π2(x) = 105j3(x)/x3.

3 HFB equations in spherical symmetry

HFB equations - Remember that the most general form of the HFB equations is(
h− λ ∆
−∆∗ −h∗ + λ

)(
U V ∗

V U∗

)
=

(
U V ∗

V U∗

)(
E 0
0 −E

)
(13)

In this expression, h and ∆ are matrices of size n×n, with n the size of the single-particle
basis (i.e. the total number of states in the HO basis in our example). λ is a shorthand
notation for λI, with I the n×n identity matrix; λ is the Fermi level introduced to constrain
the average value of the particle number to its actual value. For each of the n eigenvectors
of energy Eµ, there is one with eigenvector −Eµ.

Bogoliubov transformation - In spherical symmetry, the conjugate single-particle
states a and ā are characterized by |a〉 ≡ |nalajama〉 and |ā〉 ≡ |nalaja − ma〉. As Pe-
ter discussed in this lecture on pairing, a and ā are related by the time-reversal operator.
Just as in the HF case, the U and V matrices are block diagonal, i.e., they take the generic
form

Uab ≡ δlalbδjajbU
(laja), Vab ≡ δlalbδjajbV

(laja). (14)

The difference with the HF case is that things are not entirely independent of the projection
m. Suppose we reorder the labelling of the 2ja + 1 m-projections in each (la, ja) block
according to

m = −j,−j + 1, . . . ,+j → m = +j,−j,+j − 1,−j + 1, . . . ,+1/2,−1/2. (15)

In other words, we form pairs of states (+m,−m); there are j + 1/2 such pairs in each
block j. Spherical symmetry imposes that the U and V matrices are block diagonal in each
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of these j + 1/2 blocks. Denoting generically U
(lj)
|m| and V

(lj)
|m| such blocks, we find

U
(lj)
|m| =

(
u 0
0 u

)
, V

(lj)
|m| =

(
0 v
v̄ 0

)
. (16)

For each s.p. state a, we will note

u ≡ u(a), v ≡ (−1)ja−mav(a), v̄ ≡ (−1)ja+mav(a), (17)

The dimension of the block matrices u(a) and v(a) is (N0 − la)/2, where N0 is the number
of oscillator shells.

Densities - From these relations, it is straightforward to compute the density matrix ρ
and pairing tensor κ. Remember the general definition,

ρab = (V ∗V T )ab, κab = (V ∗UT )ab (18)

The density matrix and pairing tensor have a similar block structure as the U and V in
the (reordered) s.p. basis. We find

ρ
(lj)
|m| =

(
ρ 0
0 ρ

)
, κ

(lj)
|m| =

(
0 κ
κ̄ 0

)
, (19)

with
ρ ≡ v(a)v(a)T , κ ≡ (−1)ja−mav(a)u(a)T , κ̄ ≡ (−1)ja+mav(a)u(a)T , (20)

HFB equations - Based on the previous remarks, one can show (i) first that the HFB
equations can also be reduced to a block diagonal form in each of the j + 1/2 blocks
characterized by l, j and |m|, (ii) then that these new equations can be further reduced so
that they also become block-diagonal in the subspace of (+m,−m). The end result is that
the HFB equations take the following form(

h(a) − λ −∆(a)

−∆(a) −h(a) + λ

)(
u(a)

v(a)

)
= E(a)

(
u(a)

v(a)

)
(21)

where the u(a) and v(a) have been introduced before. Denoting

ρ(a) = v(a)v(a)T , κ(a) = v(a)u(a)T (22)

we find the mean-field,
h(a)
nanc = t(a)

nanc + Γ(a)
nanc (23)

the HF potential,

Γ(a)
nanc =

∑
nbnd

〈namanbma|v̄|ncmandma〉ρ(a)
ndna

(24)
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and the pairing field

∆(a)
nanc =

∑
nbnd

〈namanb −ma|v̄|ncmand −ma〉κ(a)
ndna

(25)

Practical implementation

1. In your HF code, you were already dealing with the blocks of the density matrix,
which I denoted by ρ(a); you must now introduce another such object that will contain
the pairing tensor κ(a). This object will also have to be initialized before to start the
HFB iterations [See what happens if you initialize it with zeros only].

2. The number of particles is not conserved in HFB. You must, therefore, not forget to
readjust λ at each iteration. This is done by requesting that

Trρ = A (26)

where A is your input particle number. The simplest way to do this is to use a BCS-
like expression for quasiparticle occupations. At a given iteration, we thus define ε̄n
and ∆̄n according to

En =
√

(ε̄n − λ)2 + ∆̄2
n (27)

Nn =
1

2

[
1− ε̄n − λ√

(ε̄n − λ)2 + ∆̄2
n

]
(28)

where En is the energy of quasiparticle number n, En ≡ E(laja), and Nn is the norm
of the V matrix for this q.p.

Nn ≡ N (laja) =
∑
n′

|v(a)
n′n|

2 (29)

[recall that you should get
∑

n′ |u(a)
n′n|2 + |v(a)

n′n|2 = 1 from the diagonalization of the
HFB matrix]. By computing the particle number as

A(λ) =
∑
laja

(2ja + 1)N (laja) (30)

we can set up a Newton-like method to obtain λ.

3. The corollary of the previous steps is that you do not need to impose that only the
first nocc occupied states are included when defining the density matrix.

6



4 RPA equations in spherical symmetry

RPA equations - Recall that the RPA equations for channel ν read(
A B
−B −A

)(
X(ν)

Y (ν)

)
= Eν

(
X(ν)

Y (ν)

)
(31)

with

Ami,nj = (εm − εi)δmnδij +

J

〈mj|V̂ res|in〉
J

(32)

Bmi,nj =

J

〈mj|V̂ res|in〉
J

(33)

where

• As before, labels m,n, . . . refer to particle states (above the Fermi level) and labels
i, j, . . . refer to hole states (below the Fermi level)

• εi are the eigenvalues of the HF equations

• V̂res is the residual interaction; in your project, you will take the same interaction as
for the HF equations, i.e., V̂ res will be the Minnesota potential

Matrix elements - The notation for the matrix elements indicates that they are com-
puted in the J-scheme; since the couping is between particle and holes of the HF states,
you do not have access to these matrix elements: the ones that you obtain from Morten’s
code are matrix elements in the HO basis, and the coupling is between s.p. states of the
bra and kets.

The simplest way to proceed is the brute force method (as usual). The coupled matrix
elements for the RPA are defined from the uncoupled ones as

J

〈mj|V̂ res|in〉
J

=
∑
all m

(−1)jb−mb+jc−mc(jajcma −mc|JM)(jbjdmb −md|JM)

× 〈jama, jbmb|V̂ res|jcmc, jdmd〉 (34)

Now, the matrix elements V res
abcd = 〈jama, jbmb|V̂res|jcmc, jdmd〉 are uncoupled (in terms of

angular momentum), but the states are still HF states. However, from the diagonalization
of the HF Hamiltonian, you get the expansion of these states as function of HO states,

|n̄ljm〉HF =
∑
n′

Dlj
n′n̄|n

′ljm〉HO (35)
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You can, therefore, express all the matrix elements V res
abcd as a function of the original matrix

elements of the potential in the HO basis.

Practical implementation

1. For a given J and parity π, define the basis of coupled particle-hole excitations, i.e.,
the states |mi〉 by taking all hole states below the Fermi level, and all the particle
states up to a cut-off Ecut that should be an input of your code. Note that in the
various expressions given above, I dropped the indices related to the n and l quantum
numbers. In practice, the HF states coming out as eigenstates of the HF matrix are

k = 0 : |0, 0, 1/2〉 ≡ 0s1/2

k = 1 : |0, 1, 3/2〉 ≡ 0p3/2

k = 2 : |0, 1, 1/2〉 ≡ 0p1/2

k = 3 : |0, 2, 3/2〉 ≡ 0d3/2

k = 4 : |0, 2, 5/2〉 ≡ 0d5/2

k = 5 : |2, 0, 1/2〉 ≡ 1s1/2
...

...

The first step is, therefore, to set up some bookkeeping mechanism to keep track of
your s.p. states and compute the p.h. two-body states.

2. Compute the JJ matrix elements according to Eq.(34)

3. Compute the matrix elements of your RPA matrix according to Eqs.(32)-(33)

4. Diagonalize the RPA matrix

5 Deformed HF equations

In principle, one could solve the deformed HF equations in the spherical basis by “simply”
adding several loops over lc, jc, ld, jd instead of assuming a block diagonal structure of
the HF matrix. However, since our neutrons are confined in a spherical trap, one would
probably never be able to observe symmetry breaking and deformation for the HF potential
and/or the density. To avoid this, we will introduce the Cartesian version of the HO
oscillator basis functions and solve the HF functions in this basis. To make calculations
doable, we also need to explicitly introduce the Moshinsky transformation, which, luckily,
is simpler in Cartesian coordinates than it is in spherical coordinates.
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In the following, we will see how to compute the matrix elements of a general Gaussian
potential in the Cartesian deformed HO basis. The potential is defined as

V̂ (r1, r2) =
Nw∑
w=1

αwe
−βw(r1−r2)2 , (36)

where the dimensions are [αw] = MeV and [βw] = fm−2.

Harmonic Oscillator Basis in Cartesian Coordinates - The eigenfunctions of a
spin-less three-dimensional harmonic oscillator (HO) are given by

ϕ(b)
n (r) = 〈r|n〉 (37)

with ϕ
(b)
n (r) = ϕ

(b)
n (x, y, z) and

ϕ(b)
n (x, y, z) =

(√
bxe
− 1

2
ξ2xH(0)

nx (ξx)
)(√

bye
− 1

2
ξ2yH(0)

ny (ξy)
)(√

bze
− 1

2
ξ2zH(0)

nz (ξz)
)

(38)

where

• The variables in the Hermite polynomials are dimensionless and are defined as

ξµ = bµxµ, µ = x, y, z and xµ = x, y, z, (39)

with the oscillator scales b ≡ (bx, by, bz) given by

bµ =

√
mωµ
~

, µ = x, y, z. (40)

The oscillator scales have dimensions [bµ] = [fm]−1.

• The Hermite polynomials are normalized

H(0)
nµ (ξµ) =

1

(
√
π2nµnµ!)

1/2
Hnµ(ξµ), (41)

and the Hnµ(ξµ) are the standard Hermite polynomials as can be found, e.g., in
Abramovitz & Stegun, Handbook of mathematical functions, Chapter 22, Eq. 22.2.14.

• The spatial quantum numbers are n = (nx, ny, nz), and the energy of the HO is given
by

EHO
n = ~ωx

(
nx +

1

2

)
+ ~ωy

(
ny +

1

2

)
+ ~ωz

(
nz +

1

2

)
(42)
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Matrix Elements of the Potential - The matrix elements of the Gaussian potential
in the HO basis are

〈n′m′|V̂ |nm〉 = 〈n′m′|
∑
w

αwe
−βw(r1−r2)2|nm〉. (43)

Explicitly, they read

〈n′m′|V̂ |nm〉 =
∑
w

∏
µ=x,y,z

∫∫
dxµdx

′
µ ϕ

(bµ)
n′
µ

(xµ)ϕ
(bµ)
m′
µ

(x′µ)α1/3
w e−βw(xµ−x′µ)2ϕ(bµ)

nµ (xµ)ϕ(bµ)
mµ (x′µ)

(44)
In the following, we will focus on the generic matrix elements

vwn′m′nm =

∫∫
dxdx′ ϕ

(b)
n′ (x)ϕ

(b)
m′(x)α1/3

w e−βw(x−x′)2ϕ(b)
n (x)ϕ(b)

m (x′) (45)

Expansion of Hermite Polynomials - We search for an expansion of the product of
two Hermite functions in the form

ϕ
(b)
n′ (x)ϕ(b)

n (x) =
n′+n∑
A=0

CA
n′nϕ

(b′)
A (x). (46)

After some not-so-lengthy algebra, we find

CA
n′n =

N∑
i=1

wiϕ
(b/
√
α)

n′ (xi)ϕ
(b/
√
α)

n (xi)ϕ
(b′/
√
α)

A (xi)α
1/4ex

2
i . (47)

At this point, we choose b′ = b
√

2, hence α = 2b2 (and b′ =
√
α). Our coefficients read

CA
n′n =

N∑
i=1

(
b
√

2
)1/2

wie
x2i ϕ

(1/
√

2)
n′ (xi)ϕ

(1/
√

2)
n (xi)ϕ

(1)
A (xi). (48)

Let us then rescale the Gauss-Hermite nodes and weights in the following way:

wi → ωi =
wi

b
√

2
ex

2
i , xi → Xi =

xi

b
√

2
. (49)

We have 
ϕ

(1/
√

2)
n (xi) =

1

21/4
H(0)
n

(
xi√

2

)
e
− 1

2

(
xi√
2

)2

=
1√
b
√

2
ϕ(b)
n (Xi)

ϕ
(1)
B (xi) = H

(0)
B (xi)e

− 1
2
x2i =

1√
b
√

2
ϕ

(b
√

2)
B (Xi)

(50)
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After these simplifications, we find

CA
n′n =

N∑
i=1

ωiϕ
(b)
n′ (Xi)ϕ

(b)
n (Xi)ϕ

(b
√

2)
A (Xi). (51)

Moshinsky Transformation - After introducing the expansion (46) of the two product
of two Hermite functions in the matrix element (45), we arrive at

vwn′m′nm = α1/3
w

∑
AB

CA
n′nC

B
m′m′

∫∫
dxdx′ ϕ

(b
√

2)
A (x)e−βw(x−x′)2ϕ

(b
√

2)
B (x′). (52)

The Moshinsky transformation consists in introducing the variables
U =

1√
2

(x+ x′)

u =
1√
2

(x− x′)
(53)

The Jacobian of this transformation is 1. Note that, in our case, since x and x′ are in
fermis, so are the U and u variables. In fact, the Moshinsky transformation below can be
applied either on the normalized Hermite polynomials, H

(0)
n , or on the Hermite functions,

ϕn, irrespective of whether the latter are properly normalized by the
√
b scale, in exactly

the same way. The new variables (U, u) have always the same units as the old one (x, x′).
In our case, we apply the transformation on the fully normalized Hermite functions to find

ϕ
(b
√

2)
A (x)ϕ

(b
√

2)
B (x′) =

∑
N,n

DNn
AB ϕ

(b
√

2)
N (U)ϕ(b

√
2)

n (u). (54)

Hence, our matrix element becomes

vwn′m′nm = α1/3
w

∑
AB

CA
n′nC

B
m′m′

∑
N,n

DNn
ABINJn (55)

with

IN =

∫
dU ϕ

(b
√

2)
N (U)

Jn =

∫
du e−2βwu2ϕ(b

√
2)

n (u).

(56)

Calculation of the integrals - We give below the analytical results for the integrals
[You can calculate them yourselves as a very simple and very boring little exercise]. We
have

IN = (−1)N

(√
2

b

)1/2 √
N !

2N/2(N/2)!
. (57)
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and

Jn =
1√
α

∑
n′

Dnn′

(
1

α

)
In′ (58)

where the Dnn′ matrices are defined by

H(0)
n

(x
b

)
=

√
b

b′

∑
n′

Dnn′

(
b′

b

)
H(0)
n

(x
b′

)
(59)

Summary - We define the auxiliary integral GAB as

Gw
AB = α1/3

w

∑
Nn

DNn
ABINJn = α1/3

w

1√
α

∑
Nn

DNn
ABIN

∑
n′

Dnn′

(
1

α

)
In′ (60)

The matrix element of a single Gaussian w in one-dimension reads

vwn′m′nm =
∑
AB

CA
n′nC

B
m′m′Gw

AB (61)

In three dimensions, we have

V w
n′m′nm = vwn′

xm
′
xnxmx

vwn′
ym

′
ynymy

vwn′
zm

′
znzmz

, (62)

which expands into

V w
n′m′nm =

∑
AxBx

CAx
n′
xnx
CBx
m′
xmx

Gw
AxBx

∑
AyBy

C
Ay
n′
yny
C
By
m′
ymy

Gw
AyBy

∑
AzBz

CAz
n′
znz
CBz
m′
zmz

Gw
AzBz (63)

Practical implementation

1. Set up a new module/class/set of routines to compute Gauss-Hermite quadratures
and the HO functions in Cartesian coordinates. Some unit tests to check the accuracy
of GH quadratures would be welcome.

2. In the next step, you should compute the various coefficients appearing in Eqs.(60)-
(63). The coefficients DNn

AB and CA
n′n, and the integrals IN and Jn can be precalculated

once and for all.

3. In Cartesian coordinates, pre-computing all matrix elements and storing them on disk
(or in memory) is not a viable option. There are 12 indices involved, the nµ, µ = x, y, z
for each of the 4 s.p. states a, b, c and d, and both the CPU time and the disk space
needed to store all matrix elements would be prohibitive. In current DFT solvers
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implementing a finite-range force (such as Gogny) in the Cartesian HO basis, the HF
potential and two-body matrix elements are computed on the fly at each iteration as

Γac =
∑
bd

v̄abcdρdb (64)

Even then, you need to carefully think of how you will set up your loops in order to
obtain a reasonable compute time.

4. The rest of the HF loop is no different from the spherical case. Note that each HF
state is not characterized by any particular quantum number.
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