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We show how to derive the energy density from the central part of the Skyrme
force. Its antisymmetrized form is

6(171,552) = tO(l +$OPU)5(T1 —7"2)(1 _PxpapT)a (1)

and this operator acts on a two-body state |ab) (or alternatively 1, (70, ) (r0})).

1 Preliminaries

We do not consider proton neutron mixing, i.e., the density matrix reads, in
configuration space
= OryrePac = 5TaTc:0ac ) (2)
Recall that the mean-field potentlal I' reads
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and the potential energy will be
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Let’s have a look at the action of P, on the state led). The contribution of this
term to the HF potential will be
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The last equality implies 7, = 7, = 7.. Hence the action of isospin exchange
operator reduces to a d0,..,. Also, the space-exchange operator commutes with
the Dirac delta function, and can be replaced by 1.

2 Coordinate Space Representation

Introducing the resolution of the identity, we find in general
Vabed = (ab|D]cd) = (ablryws)(xy2o|0| 22l (22| cd) (6)
with = (7, 0). For our spatially-local Skyrme potential, this gives
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Hence, the HF potential becomes
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Let us replace the spin-exchange operator by its expression
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We find
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3 The Spin-independent Component

We start by working out the part that does not depend on the Pauli matrices.
It gives the following contribution to the mean-field,
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The ¢ function allows us to simplify the double integral by eliminating one of

the spatial dimensions. Moreover, since the spin-functions are orthonormal, we
must have: o, = o, (particle 1) and: o, = g4 (particle 2). We therefore obtain
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In the summations over indices b and d, we recognize the local density
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Therefore,
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The total energy is given by

EY = ZZPM P, (15)

Following the exact same reasoning, it is straightforward to find that it reads
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We then work out explicitely the summations over the isospins 7, and 7. Each of
these indices run from —1/2 to +1/2, with 7 = —1/2 corresponding to protons,
and 7 = +1/2 to neutrons. We find immediately

E= /d3r7-[(r) (17)

with
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4 The Spin-dependent Component

The spin-dependent component of the central term gives the following contri-
bution to the mean-field,
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Again, the § factor allows us to simplify integration. This leads to
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Introducing the spin density s = (s, sy, S2),
= 3 plra.1'0") (o' ]o) (21)

we obtain, after reordering,
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We then proceed similarly to compute the energy density by taking the trace
(1a) o : : Ffa)
of T'gc”’ times the density matrix pe'”. We find
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We get rid of the isospin indices 7, and 7, following the exact same procedure
as for the spin independent part and find

Hr) = Jtoros () — stols () + (1) (24)

The total contribution to the energy density of the central term thus is
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