
Programming Environment for the

TALENT School

N. Schunck

July 15, 2014

General Requirements for Computational Projects

Computing Environment 2

• All programs must be controlled with the git control version
system;

• All programs must be compiled with a Makefile;
• Your programs must be modular as much and as reasonably as

possible;
• We ask that you try to use concepts of object-oriented

programming (OOP). If you use languages like C++ or Python,
this is easy; in Fortran or C, it is less obvious but still doable;

• Fortran 77 is prohibited;
• As much as possible, try to use libraries such as BLAS,

LAPACK (Fortran), Armadillo (C/C++), etc.;
• As much as possible, try to use dynamic memory allocation;
• All codes must be fully documented, both in the source code

and in the form of a short manual – or a long README,
explaining how to build and run the code.

Makefiles

Introducing Makefiles

Computing Environment 4

Our (sensible) requirement that your project must be modular
implies that you will have several files to compile, some possibly
depending on one or several of the others. The make utility is an
excellent way to automatize the compilation of such complex
projects.

First things first: make may not be installed by default in your
system, so start by installing it.

We will assume a simple C program composed of 3 files

• the file main.c containing the main() function
• the file hello.c containing a function displaying Hello, World!

• the file hello.h containing a header

Without any Makefile, the program could be compiled by
gcc -o main main.c hello.c -I.

C Programs Illustrating the Makefile

Computing Environment 5

main.c hello.c

#include
i n t main ()
{

/ / c a l l the f u n c t i o n
myPrintHelloMake () ;

return (0) ;
}

#include
#include

void myPrintHelloMake (void) {

p r i n t f (” He l lo makef i les !\n ”) ;

return ;
}

hello.h

/∗
example inc lude f i l e
∗ /

void myPrintHelloMake (void) ;

General Structure of a Makefile

Computing Environment 6

The general command of a Makefile is
Target : Dependency

[Tabulation]Command

The Target is a label that you choose to define a target, i.e.,
something that you want to obtain. In our example, the executable
main would be our target.

The Dependency is anything that is required to “reach” the target.
In our example, the executable main depends on some object files:
these are our dependencies.

The target is then produced by executing the Command. In our
example, the command would be the C compiler on our system.

Dependencies are often also targets. Again, in our example, the
object file hello.o needed to produce the target main can be
thought of a target, which will be produced by the C compiler.

Simple Makefile

Computing Environment 7

Below is the simplest Makefile we could make out of our example:

h e l l o : h e l l o . o main . o
gcc −o h e l l o h e l l o . o main . o

h e l l o . o : h e l l o . c
gcc −o h e l l o . o −c h e l l o . c −W −Wall −ansi −pedant ic

main . o : main . c h e l l o . h
gcc −o main . o −c main . c −W −Wall −ansi −pedant ic

If you save this code into a file Makefile, you can compile the
project by simply typing

make

This will produce the executable hello (the primary target). This
primary target has two dependencies, main.o and hello.o.
Each of them is the target of another command, with main.o

depending on hello.h.

More Advanced Makefile

Computing Environment 8

We add three more rules to: (i) list of the executables to produce
(all), (ii) delete intermediate object files (clean), and (iii) remove
the executable to force a complete rebuild (mrproper).

a l l : h e l l o

h e l l o : h e l l o . o main . o
gcc −o h e l l o h e l l o . o main . o

h e l l o . o : h e l l o . c
gcc −o h e l l o . o −c h e l l o . c −W −Wall −ansi −pedant ic

main . o : main . c h e l l o . h
gcc −o main . o −c main . c −W −Wall −ansi −pedant ic

c lean :
rm − r f ∗ . o

mrproper : c lean
rm − r f h e l l o

User Variables

Computing Environment 9

Instead of repeating the same command for compilation, we define
our own variables.

CC = gcc
CFLAGS = −W −Wall −ansi −pedant ic
LDFLAGS =
EXEC = h e l l o

a l l : $ (EXEC)

h e l l o : h e l l o . o main . o
$ (CC) −o h e l l o h e l l o . o main . o $ (LDFLAGS)

h e l l o . o : h e l l o . c
$ (CC) −o h e l l o . o −c h e l l o . c $ (CFLAGS)

main . o : main . c h e l l o . h
$ (CC) −o main . o −c main . c $ (CFLAGS)

clean :
rm − r f ∗ . o

mrproper : c lean
rm − r f $ (EXEC)

Combining Internal and User Variables

Computing Environment 10

There are pre-defined variables that come handy:
$@ Name of the target
$< The name of the first dependency
$ˆ The list of all dependencies
$? The list of all dependencies that are more recent than the target
$* The name of the file without the extension

CC = gcc
CFLAGS = −W−Wall −ansi −pedant ic
LDFLAGS =
EXEC = h e l l o

a l l : $ (EXEC)

h e l l o : h e l l o . o main . o
$ (CC) −o $@ $ ˆ $ (LDFLAGS)

h e l l o . o : h e l l o . c
$ (CC) −o $@ −c $< $ (CFLAGS)

main . o : main . c h e l l o . h
$ (CC) −o $@ −c $< $ (CFLAGS)

clean :
rm −r f ∗ .o

mrproper : c lean
rm −r f $ (EXEC)

Inference Rule

Computing Environment 11

We now define generic rules to build all object files (extension .o)
from source files (extension .c in our C programs). This is done with
the inference rule

%.o : %.c

We also add the requirement that object files depend on the header
files (only one in our case, but they could be more).

CC = gcc
CFLAGS = −W−Wall −ansi −pedant ic
LDFLAGS =
EXEC = h e l l o
DEPS = h e l l o . h

a l l : $ (EXEC)

h e l l o : h e l l o . o main . o
$ (CC) −o $@ $ ˆ $ (LDFLAGS)

%.o : %.c $ (DEPS)
$ (CC) −o $@ −c $< $ (CFLAGS)

clean :
rm −r f ∗ .o

mrproper : c lean
rm −r f $ (EXEC)

Automatic Generation of Object Files

Computing Environment 12

Finally, we define the list of all sources files that need be compiled,
put it in a variable SRC, and automatically define the corresponding
list of object files through
OBJ= $(SRC:.c=.o)

The final Makefile looks like

CC = gcc
CFLAGS = −W−Wall −ansi −pedant ic
LDFLAGS =
EXEC = h e l l o
DEPS = h e l l o . h
SRC = h e l l o . c main . c
OBJ = $ (SRC : . c =. o)

a l l : $ (EXEC)

h e l l o : $ (OBJ)
$ (CC) −o $@ $ ˆ $ (LDFLAGS)

%.o : %.c $ (DEPS)
$ (CC) −o $@ −c $< $ (CFLAGS)

clean :
rm −r f ∗ .o

mrproper : c lean
rm −r f $ (EXEC)

The Git Version Control System

Introducing Version Control System

Computing Environment 14

Git is an open source version control software (VCS).

Advantages of VCS:

• Keep a record of the entire development history of a project
(can be a code or anything else, for example the versions of
your Ph.D. thesis...)

• Each snapshot of the project (list and content of all files and
directories) is recorded with a mandatory comment describing it

• Considerably improves the maintenance of projects involving
several people

Disadvantages: None... (OK, there is a learning curve)

Installing Git

Computing Environment 15

Start with downloading the software:

• Linux: use your distribution package manager to install it
• Windows: go to http://git-scm.com/downloads and download the

client
• MacOs: it is a good idea to install it via Homebrew or Macports.

Ask if you are not familiar with these softwares

You may want to use a GUI client. One possible choice is git-cola,
available at https://git-cola.github.io/. Its main advantage is that it is
multi-platform, i.e., it will work on Linux, Windows and MacOS
equally well.

In a terminal window, you can access the documentation with
git --help

and the documentation on a specific topic with, e.g.,
git branch --help

First Git Project (1/2)

Computing Environment 16

In the following, we will illustrate most basic features of git using the
command line. We assume that you want to create a folder dir/
that will contain a bunch of files, and you want the entire dir/

folder to be under git control.

In the folder that contains dir/, type:
git init dir

While still in the directory dir/ create the file hello.f90 and
write the Fortran 90 code needed to display the usual Hello World!

message. The content of the directory has been changed, since
you have added a new file.

Take a snapshot of the directory with
git add .

and record this snapshot with
git commit

First Git Project (2/2)

Computing Environment 17

Note that when you commit your project, you have to type in a
commit message. Be serious about it: in complex projects, commit
messages are invaluable sources of information!

Under Linux, it is very likely that the commit message has to be
entered with the vi editor: first press i to enter the edit mode, then
type your comments, then type ZZ to record and close.

The initial commit creates a new branch in the git repository, named
master (all git repositories have a master branch).

If you add a file to the directory, or if you remove a file, or if you
modify an existing file (by editing it for instance, or by changing its
attribute), you are modifying the active branch – in our simple
example, master.

Useful Git Commands

Computing Environment 18

To see if there is anything that has been modified since your last
commit
git status

To see the history of the versions of your project
git log

To list all branches of your project
git branch

The asterisk lists the branch that is currently active, i.e., the branch
you are “sitting on” (think ot the branches of the tree, really).

Commits are referenced with some crazy labels. You can view the
difference between the current branch and a former commit with
commands such as
git diff 655987702ea15b9daa12dc8bc37023b35fc4eb50

Branches

Computing Environment 19

So far, the master branch of our git project is made of a directory
dir with a file called hello.f90.

Create a new branch with
git branch C++

List the branches...
git branch

Checkout the new branch, i.e., if your git project is a tree, you are
now moving to a new branch, the one named C++

git checkout C++

Now, delete the file hello.f90, and create a new one called
hello.cc with the code to display Hello, World! in C++.

After checking the status of the git repository, add and commit the
new file; check the history of the repository. What happens if you
now checkout the master branch?

To go Further on Git

Computing Environment 20

This short introduction should allow you to get started with Git. The
topics that have not been covered:

• How to import, export and backup a Git repository on some
online servers such as Bitbicket or Github, where you can create
accounts for free.

• How to merge branches and resolve conflicts: this is especially
important if you use Git as part of a team.

Documentation:

• http://git-scm.com/docs/gittutorial: This is a good starting point if
you are totally unfamiliar with Git and version control system. In
fact, I used the material in these slides as inspiration.

• http://nvie.com/posts/a-successful-git-branching-model/: For the
more advanced users, this blog entry discusses a possible Git
strategy for a project development.

Workplan

Today

Computing Environment 22

The goal of the first session is to write a short program (in your
favorite language) that achieves the following

• Read as input an integer N giving the dimension of a matrix
• Set up a matrix of real numbers and dimension N ×N

• Diagonalize the matrix using a call to a library
• Display the first 10 eigenvalues

If you think this is so easy that it makes you ashamed of even
contemplating doing this, we suggest you start developing a
module (in your favorite language) implementing Gauss-Laguerre
quadrature. In particular, you could try to very numerically the
orthonormality of HO radial wave functions.

	General Requirements for Computational Projects
	Makefiles
	Introducing Makefiles
	C Programs Illustrating the Makefile
	General Structure of a Makefile
	Simple Makefile
	More Advanced Makefile
	User Variables
	Combining Internal and User Variables
	Inference Rule
	Automatic Generation of Object Files

	The Git Version Control System
	Introducing Version Control System
	Installing Git
	First Git Project (1/2)
	First Git Project (2/2)
	Useful Git Commands
	Branches
	To go Further on Git

	Workplan
	Today

