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What's the big deal with neutron star mergers?

Moesta et al. (2020)




What's the big deal with neutron star mergers?

Photometry for GW170817

Time since max (Rest frame days)
30

Open Kilonova Catalog

1. Transients - Can we explain
everything we see?

2UDSTIUMHINOUS

Luminous
red
novae

°
o
o
>
)
o
w
]
3
@
3
»
Q
3,
=
&
a
®
3
1
o,



What's the big deal with neutron star mergers?

Lanthanide

Transients - Can we explain
everything we see?

Solar r-process abundance

Heavy elements - Where did all
this stuff come from?
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What's the big deal with neutron star mergers?

Transients - Can we explain
everything we see?

Heavy elements - Where did all
this stuff come from?

Short GRBs - How can nature
create such an energetic burst in
so little time?

Ryan et al. (2020)



What's the big deal with neutron star mergers?

1. Transients - Can we explain
everything we see?

2. Heavy elements - Where did all
this stuff come from?

3. Short GRBs - How can nature
create such an energetic burst in
so little time?

4. Black Holes - how do they form?
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What's the big deal with neutron star mergers?

o\

Ejecta
< Dlsk O—) Y, <0.1

1. Transients - Can we explain
everything we see? // \\ k‘\
2. Heavy elements - Where did all
this stuff come from? Metzger & Fernandez (2014)

3. Short GRBs - How can nature

create such an energetic burst in : ;
so little time? Neutrinos can:

4. Black Holes - how do they form? it

Cool the disk/remnant
2. Drive outflows/jets
3. Protonize outflows

n



Do we really understand?
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Open Questions So let's model.it!
How is the outflow launched? e GR magnetohydrodynamics
When is a black hole formed? e Nuclear equation of state
Does the ejecta match the e Radiation transport

solar r-process pattern?

Are we seeing new physics?
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Do we really understand?
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Do we really understand?
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Do we really understand?
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Relative abundances

Parameter studies require many simulations
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But approximations induce errors.
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Do we really understand?




Do we really understand?
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Do we really understand?

(8LOZ +221pDY WOy bIDQ)

Neutrino mass
and potential
affect velocity.
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Do we really understand?

Neutrino mass
and potential

—af ="
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Aside: Plasma Instabilities

Because charged particles feel
potential from other charged particles:

Black = Right Streaming Particles
eft Streaming Particles

Blue

1. Perturbation in particle
induces electrictmagnetic field

2. Electrictmagnetic field influences
particle

3. Particle perturbations grow
exponentially
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http://www.youtube.com/watch?v=__7GQS15IdE

Neutrino Plasma Instabilities

Because neutrinos feel
t=4.07e-10 (s) potential from other neutrinos:

1. Perturbation in particle
induces flavor background

2. Flavor background influences
particle

3. Particle perturbations grow
exponentially
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https://docs.google.com/file/d/1HsOhoRKgYVfCFaauX0byL9KB7AFIs4ST/preview

Do we really understand?

(8LOZ +221pDY WOy bIDQ)

® NEUTRON
ELECTRON
e NEUTRINO

e Neutrino flavor determines nucleosynthesis
= e | % e Neutrinos are unstable to fast flavor transformation
e e How many of each flavor are present
*e e post-instability?
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® NEUTRON
ELECTRON
e NEUTRINO

e Determine neutrino flavor abundances aofter the
bt fast flavor instability saturates
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Particle-in-cell method : @ |

electron eleciron
neutrino neutrino

3-dimensional

electron
neutrino
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1D Two-Beam Instability

(The problem with an analytic solution)

Electron Neutrinos

Electron Anti-neutrinos

Consistency check completel

80 90
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https://docs.google.com/file/d/16CXnrsHc5t6HusviLuO7D9QlVuF7n0Ac/preview

1D “Fiducial® Test

Initial Conditions “‘Linear Growth" Saturation

t=0.00 ns t=5.00 ns
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1D “Fiducial” Test
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Im(w) = 1.06 x 101051

The wavelengths match!
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1D “Fiducial” Test
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(=)
(-
()

31




1D “Fiducial® Test

Saturation of the
isotropic mode Kkills the

growth of the anisotropic
mode
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1D “Fiducial® Test

YN

Saturation of the
isotropic mode Kkills the

growth of the anisotropic
mode

The flavor distribution is

highly symmetric even
after saturation.
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1D “Fiducial® Test

Diffusion in Fourier space
is described by

—1/8
s t
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1D Parameter Sweep

\
[V r.ooe
1NN \/'\,’\/“\Vf\/'\

\e
P AT TN s

L

The growth rate oand
final flavor content

’,
ALY

depend on the
distribution details.
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1D Parameter Sweep

Effects of flavor mixing
are likely over-estimated
[This was known, but we

confirmed.]

60 80 100 120 140 160 180 200 220
mass number, A
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https://docs.google.com/file/d/1ai2AvN1IUPwTpEWOsRpRsFD5yhoi5zNk/preview

“Fiducial" simulation:

Saturation of the
isotropic mode kills
the growth of the

anisotropic mode

The flavor distribution
is highly symmetric
even after saturation.

3D is similar to 1D,

but decoheres more quickly.

Conclusions

Parameter Sweep:

The growth rate and
final flavor content
depend on the
distribution details.

Nucleosynthesis:

Parameter studies will
allow effective treatment

of flavor transformation
in neutron star merger
simulations.

Numerical Methods:

Effects of flavor mixing
are likely over-estimated

[This was known, but we
confirmed.]




